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Background: The World Health Organization (WHO) report has predicted 
that major depression will become a key cause of illness-induced disability 
by the year 2020, second only to ischemic heart diseases. Objectives/methods: 
Although a large number of antidepressant drugs (from monoamine oxidase 
inhibitors and tricyclic antidepressants to dual reuptake inhibitors) are avail-
able for treatment of the disease, approximately 30% of patients failed to 
respond to this therapy. Therefore, the search for newer or novel drug targets 
for the treatment of major depression continues. Some of these targets 
include dopamine, triple reuptake inhibition, L-arginine-nitric oxide (NO)-cyclic 
guanosine monophosphate (cGMP) pathway, sigma-1 receptors, neurosteroids, 
melatonin, glutamate, 5HT6, 5HT7 serotonin receptor antagonists, β-3 adre-
noceptor antagonist, vasopressin V(Ib) receptor antagonists, NK2 tachykinin 
receptor antagonists, glucocorticoid receptor antagonists and corticotropin-
releasing factor-1 receptor antagonists, as well as herbal antidepressant 
drugs. The present review attempts to discuss the status of some of these 
novel approaches and the drugs that are under investigation for the treatment 
of major depression. An attempt is also made to review the status of three 
indigenous plant-derived drugs, berberine, curcumin and rutin, as novel 
and safe future herbal antidepressants. Results/conclusion: There is an exciting 
future in the discovery of novel targets and target-specific agents for the 
management of major depression.
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1.	 Introduction

Major depression represents one of the most common and proliferating health 
problems worldwide  [1,2]. With increasing longevity, its prevalence is estimated to 
be 15 – 20 %  [3-5]. It is speculated that approximately 340 million people worldwide 
suffer from major depressive disorder  [6] and nearly 35 – 40% of suicides are 
considered to be related to major depression as an underlying cause  [7]. At one 
time it was commonly considered as a progressive neurodegenerative disorder 
(commonly observed in elderly people), but in recent years it is increasingly 
observed in young adults, adolescent and even in children  [8]. Major depression, 
particularly in lower age groups, if untreated can affect the performance and 
learning, social interactions and development of normal peer relationships, self-esteem 
and life skill acquisition during adulthood, as well as leading to antisocial activities 
like substance abuse, disruptive behavior, violence and aggression, criminal activity, 
and even suicidal ideations later in life  [9]. Major depression is more commonly 
seen among women than men (in all age groups)  [9]. In spite of the large number 
of drugs available for the management of the disease, there has been a continuous 
search for newer and target-specific drugs to better manage the disease. The present 
review discusses the status of these developments.
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2.	 The	need	for	newer	antidepressants

Although a large number of antidepressant drugs are  
commercially available for the treatment of major depression, 
the search for alternative targets and specific drugs is a  
continuous effort, for the following reasons.

The presently available blockbuster drugs like imipramine •	
(Tofranil® [Novartis, Basel, Switzerland]; tricyclic antide-
pressant), fluoxetine (Prozac® [Eli Lilly, IN, USA]; selective 
serotonin reuptake inhibitor), citalopram (Celexa®  
[H. Lundeback, IL, USA]; selective serotonin reuptake inhibitor) 
and venlafaxine (Effexor® [Wyeth, Madison, New Zealand]; 
dual reuptake inhibitor of norepinephrine and serotonin) 
have been in use for many years. However, approximately 
30% of depressed patients do not respond fully to the drug 
therapy and the remaining 70% do not achieve complete 
remission  [10,11]. A 10-year follow-up study to determine the 
number of well versus unwell days in patients on antidepressant 
drugs  [12] has shown that they spent three-quarters of the 
decade in euthymia and the remaining quarter in subthreshold 
or threshold major depression  [12].
Currently available antidepressant drugs show clinical •	
response after a lag period of 2 – 4 weeks. Therefore, there 
is a need to develop drugs with a faster onset of action  [13].
Currently used antidepressants have several adverse drug •	
reactions as well as drug–drug interactions, besides other 
actions. For example, tricyclic antidepressant drugs are 
associated with a plethora of side effects that include anti-
muscarinic, α1-adrenergic, and histaminergic actions  [14]. 
Similarly, monoamine oxidase inhibitors are known to produce 
‘cheese reaction’ when administered with dairy products  [15].

Figure 1 depicts the development of antidepressants and 
the available new targets for the treatment of major depression. 
These new drug targets are discussed below.

3.	 Animal	models	used	to	screen	antidepressant	
molecules	and	their	limitations

Out of all the animal models, forced swim test (FST) and 
tail-suspension test (TST) are commonly employed to screen 
antidepressant drugs. The FST is credited for having good 
predictive validity for detecting antidepressant activity  [16,17]. 
The test also has been used to investigate the mechanism of 
action of antidepressant drugs  [18-20]. The FST relatively is 
highly selective for antidepressants as compared to other 
classes of central nervous system drugs  [21]. For example, the 
benzodiazepines are not active in FST  [21], with the exception 
of alprazolam, the only benzodiazepine to exhibit antidepressant-
like effects  [22]. However, psychomotor stimulants like 
amphetamines reduce the immobility period in FST and are 
probably not effective as antidepressants. Because of this 
pattern, additional testing for locomotor activity along with 
FST is generally advocated, although drugs that decrease 
immobility time in the FST and also simultaneously increase 

the locomotor activity, such as bupropion and GBR12909, may 
still have antidepressant activity  [23]. Genetic factors and strain 
variation also influence immobility profile in FST  [24-27]. 
The Swiss strain of mice has been found to be highly sensi-
tive to detect serotonin and/or noradrenaline-mediated 
behaviors  [28]. DBA/2 inbred mice do not show any specific 
immobility profiles in FST  [28]. The DBA/2 strain have high 
levels of dopamine, noradrenaline and serotonin contents in 
the brain and as such do not show despair behavior  [28].

In TST, mice are suspended by their tails for a defined period 
of time and their immobility is assessed. The model has been 
validated across a broad range of antidepressants  [29]. Despite the 
apparent conceptual similarity with the FST, behavior in the 
TST may have a different neurochemical basis  [26,30]. A major 
advantage of TST is that it is simple, inexpensive and allows 
for automation. A major drawback of TST is that its appli-
cation is limited to strains that do not climb their tail  [31]. 
Moreover, neither FST nor TST reflect the slow onset of 
antidepressant action as is observed in clinics. Therefore, 
whether these tests (or others) will predict true antidepressant 
efficacy for novel mechanisms remains to be seen.

4.	 Revisiting	dopamine	in	major	depression:	
the	concept	of	‘triple	reuptake	inhibitors’

Dopaminergic neurons are known to innervate brain areas 
associated with behavioral and physiological functions that 
are altered in major depression (e.g., the cortex, limbic 
structures, and the pituitary gland). These brain areas are 
involved in cognition and modulation of behaviors linked 
with motivation and reward  [32]. Disruption of these behav-
iors may lead to anhedonia (decreased pleasure), social isola-
tion, and psychomotor retardation or agitation and other 
behavioral symptoms that are the core psychopathologies of 
major depression  [33]. Various evidence has implicated the 
involvement of the dopaminergic system in the pathophysiology 
of major depression  [34]. A lower density of radioligand 
binding to the dopamine transporter was observed in the 
basal and central nuclei of the amygdala from subjects diag-
nosed with major depression  [33]. Homovanillic acid (HVA), 
a metabolite of dopamine, is found to be decreased in 
patients suffering from major depression, suggesting that a 
decrease in dopamine turnover is associated with the 
pathophysiology of major depression  [34] (Figure 2). Recently, 
it has been found that the HVA/5-hydroxyindolacetic acid 
(metabolite of serotonin) (HVA/5-HIAA) ratios are reduced 
in cerebrospinal fluid of depressed patients who committed 
suicide due to major depression  [36].

Animal studies have shown that lesions of dopaminergic 
neurons in the substantia nigra pars compacta and in the 
ventral tegmental area produced depression-like behavior in 
rats  [37]. It is being suggested that that the HVA/5-HIAA 
ratio may be a biomarker of suicidal intent  [36]. In one  
of the studies conducted in our laboratory, it has been  
suggested that bupropion (Wellbutrin®[Sun Pharmaceuticals, 
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Dopamine levels
decrease in the brain of

depressed  patients

Dopamine
in depression

Dopamine receptors
appear to be unaffected

in depression and
dopamine receptor

antagonists have no
consistent effect on

mood

Hypofunctioning of
mesocorticolimbic

dopaminergic system

Dopamine reuptake inhibitors
such as bupropion and

nomifensine are effective
antidepressants

This area needs further
exploration

Anhedonia (decreased
pleasure) in depressed patients

may be due to dopamine
hypofunction

Decreased levels of
Homovanillic acid

(HVA), a dopamine
metabolite

Decrease in dopamine turnover
is associated with the

symptoms of depression

Figure	2.	Summary	of	the	role	of	dopamine	in	depression.

Mumbai, India], a dopamine reuptake inhibitor with some 
noradrenergic activity via enhancing the levels of dopamine 
in brain  [38]) possessed antidepressant-like effects (Figure 3)  [39]. 
However, in clinics the antidepressant activity of bupropion is 
still controversial. While it was effective in a 70-year-old 
female patient suffering from resistant depression  [38], it produced 
a major depression-like state in another set of patients  [40]. It 
is often classified as an atypical antidepressant, as bupropion 
was also demonstrated to selectively inhibit the firing rates of 
noradrenergic cells in the locus coeruleus (at doses signifi-
cantly lower than those which inhibit the activity of midbrain 
dopaminergic cells or dorsal raphe serotonergic cells)  [41].

Nomifensine is another antidepressant having dopamine- and 
norepinephrine-inhibiting properties with little effect on 
serotonin reuptake mechanism  [42]. Various dopamine D3-preferring 
(D2/D3) dopamine receptor agonists such as pramipexole  [43] 
have been reported to show therapeutic efficacy in major 
depression. The pharmacokinetic profile has been shown in 
Table 1. Dopamine D3 receptors are mainly located in the 
limbic area of the brain, and are therefore speculated to play an 
important role in the pathophysiology of major depression. It 
has been proposed that the 2 allele of the dopamine receptor 
D3 gene seems to be associated with unipolar depression  [44].

In one of the studies using mice, we have reported the 
antidepressant profile of ropinirole (Requip® [GlaxoSmithKline, 
PA, USA]), a D2/D3 dopamine receptor agonist in both FSTs 
and TSTs  [45]. It exhibited an S-shaped curve in its antide-
pressant-like activity. Further, the antidepressant action was 
blocked by haloperidol (Haldol®), a D2 dopamine receptor 
blocker, and sulpiride, a D2/D3 dopamine receptor antagonist, 

suggesting the involvement of dopamine receptors in its 
antidepressant action. When neurochemical analysis was 
done, surprisingly, it was found that the administration of 
ropinirole did not affect dopamine levels in the brain but 
resulted in increased levels of serotonin in the whole brain 
preparation (Figure 4)  [45]. It was hypothesized that seroton-
ergic stimulation of the prefrontal cortex  [46], or the nucleus 
accumbens  [47], potently releases dopamine.

The increase of dopamine release in the prefrontal and fron-
tal cortex by 5-HT1A serotonin agonists has also been demon-
strated  [48]. Lejeune and Millan demonstrated that the selective 
activation of 5HT1A postsynaptic receptors also elicits an 
increase in ventral tegmental area dopaminergic output  [48]. 
However, the exact mechanisms of ropinirole-induced serotonin 
release and its relationship with dopamine needs further 
exploration. The use of ropinirole in clinics is limited, as it 
produced transient hallucination  [49]. Similarly, pramipexole 
(Mirapex® [Boehringer Ingelheim, Ingelheim, Germany]), a 
D2/D3 dopamine receptor agonist, piribedil, a dopamine receptor 
agonist  [50] and oxcarbazepine, a keto-analogue of carbam-
azepine (Tegretol®, an antiepileptic drug) have also been shown 
to possess antidepressant-like effects in animal models of despair, 
possibly by modulating the dopaminergic neurotransmission  [51].

It is therefore, reasonable to assume that antidepressant 
medications that increase all the three monoamines (norepinephrine, 
serotonin and dopamine), such as a ‘triple monoamine reuptake 
inhibitor’, may offer an additional advantage in the treatment 
of major depression over a single-site agent. Therefore, the 
simultaneous targeting of all three monoaminergic systems 
may be advantageous.
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Figure	3.	Effect	of	bupropion	(10,	20	and	40	mg/kg	i.p.)	on	
the	biogenic	amines	levels	in	the	mice	brain	homogenates. 
Data were analyzed by one-way analysis of variance (ANOVA) 
followed by Dunnett’s test (n = 6 – 8) [39].
*p < 0.05 compared with vehicle-treated group. 
‡p < 0.05 compared with bupropion (10 mg/kg, i.p.)-treated group. 
§p < 0.05 compared with bupropion (20 mg/kg, i.p.)-treated group.

recent clinical study, DOV216303 was found to be safe  
and well tolerated both at single doses of ≤ 100 mg and 
multiple doses of ≤ 100 mg/day for 10 days  [57]. Chronic, 
but not acute, treatment with DOV216303 (20 mg/kg)  
is known to normalize olfactory bulbectomy-induced  
hyperactivity in the open field test, the effect being similar 
to that of imipramine (20 mg/kg)  [54]. Interestingly, these 
doses of DOV216303 had no effect on sexual behavior at 
any time point  [54]. Regarding the pharmaco-kinetics of DOV 
216303, it is known to be rapidly absorbed (plasma Tmax  
of 0.7 – 1.2 h and t½ of 3.3 – 4.4 h)  [57]. Another molecule, 
DOV21947, which is the enantiomeric form of DOV216303, 
is also effective in FSTs in rats  [58]. Another triple reuptake 
inhibitor, DOV102677, enhanced the extracellular levels  
of dopamine, serotonin, and norepinephrine in the pre-
frontal cortex and levels of dopamine and serotonin in the 
nucleus accumbens, along with reducing their metabolites in 
both regions  [59].

Some of the other triple reuptake inhibitors under  
investigation include PRC 200-SS, AMRI CNS-1 and  
AMRI CNS-2. Tesofensine (NS-2330) is another triple 
reuptake inhibitor developed by NeuroSearch that has an 
added advantage of long duration acting drug with a t½  
of approximately 8 days  [60]. This molecule is also known  
to increase the mRNA expression of brain-derived neu-
rotrophic factor and promotes hippocampal neurogenesis. 
However, due to inadequate inhibition of dopamine 
reuptake, tesofensine failed to provide clinical benefit  
as monotherapy in early Parkinson’s disease  [61]. Another 
triple reuptake inhibitor in Phase I clinical trials is the  
Sepracor molecule SEP225289  [62]. PRC200-SS, a new triple 
reuptake inhibitor synthesized by the Mayo Clinic and  
currently in preclinical studies, is known to potently bind  
to the human serotonin, norepinephrine, and dopamine 
transporters with Kd values of 2.3, 0.63, and 18 nM, respec-
tively  [63]. Similarly, JNJ-7925476 is a triple reuptake 
inhibitor synthesized by Johnson & Johnson; it is under 
preclinical development  [64]. One of the triple reuptake 
inhibitors from Bristol-Myers Squibb is also in Phase I clinical 
trials for the treatment of major depression.

It is interesting to note that SNRIs (dual reuptake inhibitors 
of serotonin and norepinephrine) such as venlafaxine and 
sibutramine are also known to weakly inhibit the reuptake 
of dopamine at high doses, and so while these drugs are 
selective for the serotonin and noradrenaline transporters at 
usual doses, they can act as SNDRIs when taken at doses 
above the normal therapeutic range.

6.	 L-arginine-nitric	oxide-cyclic	guanosine	
monophosphate	pathway	modulators

The nitric oxide pathway has recently been demonstrated to play 
a major role in the action of various antidepressants  [40,45,65,66]. 
Nitric oxide, a gaseous molecule, is formed from L-arginine 
by a reaction catalyzed by the enzyme nitric oxide synthase 

Table	1.	Pharmacokinetic	parameters	of	ropinirole	and	
pramipexole	dopamine	receptor	agonist.

Parameters Ropinirole Pramipexole

Oral bioavailability 55% > 90%

Time to peak action 1 – 2 h 2 h

Volume of distribution 7.5 l/kg 500 l/kg

Plasma proteins bounding 40% 15%

Elimination half-life 6 h 8 – 12 h

Available tablets 0.25 – 5 mg 0.125 – 1.5 mg

5.	 Triple	reuptake	inhibitors	(SNDRIs)

Recently, the concept of triple reuptake inhibition has been 
introduced  [52,53]. Two major molecules belonging to this 
category are GlaxoSmithKline’s lead candidate, NS2359, 
and Merck’s triple reuptake inhibitor DOV216303  [54,55] 
racemic compound (expected to be launched in 2011). It is 
anticipated that these molecules will have better efficacy and 
safety profiles compared with those of existing antidepressants; 
more interestingly, the lag period of 2 – 4 weeks with 
conventional antidepressants may be overcome by the use of 
these inhibitors  [53]. GlaxoSmithKline also has the rights to 
launch NS2359 for the treatment of attention deficit hyper-
activity disorder (ADHD), a psychiatric disorder characterized 
by disturbances in attention, hyperactivity and impulsiveness  [56]. 
NS2359 is known to induce a significant improvement of 
cognitive function, as this molecule also alters the cholinergic 
neurotransmission in the brain. DOV216303 is active  
in mouse FSTs and tetrabenazine-induced ptosis  [55]. In a 
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(NOS) enzyme. Three isoforms of nitric oxide synthase 
enzyme have been identified: neuronal nitric oxide synthase 
(nNOS), endothelial NOS (eNOS), and inducible NOS 
(iNOS)  [65]. Various NOS inhibitors have been demonstrated 
to have antidepressant-like action in animal models of despair. 
In some of the studies carried out in our laboratory, the involve-
ment of this pathway in the antidepressant-like action of 
venlafaxine  [65], bupropion  [40], and berberine (an isoquinoline 
alkaloid obtained from Berberis aristata)  [67,68] have been dem-
onstrated. This pathway is also involved in mediating the 
antidepressant-like action of adenosine  [69], memantine  [70], 
zinc  [71], tramadol  [72], and others.

It is known that nitric oxide activates soluble guanylate cyclase, 
which further converts guanosine triphosphate (GTP) to cyclic 
guanosine monophosphate (cGMP), as shown in Figure 5.

It is known that excessive production of cGMP may produce 
a depression-like state, while reduced levels of cGMP can 
produce the opposite (i.e., have an antidepressant-like action)  [73]. 
cGMP can be decreased either by inhibiting the soluble 
guanylate cyclase (e.g., using methylene blue) or by decreasing 
the production of nitric oxide (by inhibiting NOS enzyme). 
cGMP is further degraded into guanosine monophosphate (GMP) 
with the help of enzyme phosphodiesterase. Therefore, inhibiting 
phosphodiesterase enzyme by using various inhibitors (such as 
sildenafil) may increase the levels of cGMP and in turn 
produce depression-like phases. This pathway may be further 
explored in elucidating the mechanism of action of various 
antidepressant drugs. However, nitric oxide is known to 
produce dual effects. Both L-arginine (a precursor of nitric 
oxide) and N(G)-nitro-L-arginine (L-NNA, a NOS inhibitor) 
display antidepressant-like activity in FSTs  [74]. Various nitric 
oxide modulators could be the future drugs for the treatment 
of major depression.
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Figure	 4.	 Effect	 of	 ropinirole	 (10	 mg/kg,	 i.p.)	 on	 the	
alteration	 in	 neurotransmitter	 levels	 in	 the	 mouse	 whole	
brain. Ropinirole (10 mg/kg, i.p.) was administered 30 min before 
sacrificing the animals. Data were analyzed by one-way analysis of 
variance (ANOVA) followed by Tukey’s test. [45].
*p < 0.05 compared with vehicle-treated group.

7.	 Sigma-1	receptor	modulators

Sigma receptors are non-opioid, non-phencyclidine intracellular 
receptors that have been explored as novel targets for  
antidepressant drugs. This receptor system was initially 
categorized as a subtype of opioid receptors in the 1970s  [75]. 
However, due to a lack of sensitivity to naltrexone (selective 
antagonist of opioid receptors), these receptors are now  
categorized as distinct from the opioid class  [76]. The sigma 
receptor binding sites have been identified in various regions 
of brain with its abundance in hippocampus, hypothalamus 
and substantia nigra, the brain areas related to motor, endocrine 
and memory functions  [77,78]. Selective serotonin reuptake 
inhibitors like fluvoxamine (Luvox® [Solvay Pharmaceuticals, 
Bruselles, Belgium]) have been reported to possess higher 
affinity for sigma-1 receptors  [79], while tricyclic antidepres-
sants appear to have moderate affinity  [80].

A recent positron emission tomography (PET) study 
demonstrated that a single oral administration of fluvoxamine 
occupies sigma-1 receptors in the human brain  [81]. Other 
evidence has shown that sigma-1 receptor agonists have 
antidepressant-like action in various animal models of 
despair  [82]. In some of the studies carried out in our labo-
ratory, the involvement of sigma-1 receptors in the antide-
pressant action of venlafaxine  [83], bupropion  [84], berberine  [68] 
and neurosteroids  [85] has been extensively demonstrated. 
(+)-Pentazocine, an agonist of sigma receptors, enhanced 
the antidepressant-like effect of neurosteroids (dehydroepi-
androsterone sulfate and pregnenolone sulfate), whereas 
prior administration of progesterone, rimcazole and BD-1047 
reversed the antidepressant-like effect of these neurosteroids. 
It is suggested that neurosteroids (dehydroepiandrosterone 
and pregnenolone sulfate) may have sigma-1 receptor-modulatory 
action  [85].

Sigma-1 receptor activation tonically inhibits the K+ channel 
activity, as these receptors are closely associated with these 
channel function  [86]. Earlier studies have shown inhibition 
of different types of potassium channels to produce antide-
pressant-like effects in mice  [87,88]. Sigma-1 receptors are also 
associated with regulation of the activity of NMDA receptor 
channels  [89]. Inhibition of K+ channels by sigma-1 receptors 
indirectly induces the functioning of NMDA receptor channels. 
The activation of sigma-1 receptors by (+)-pentazocine 
potentiated NMDA receptor responses and associated 
long-term potentiation by inhibiting a small Ca2+-activated 
K+ current  [90]. All these actions seem to lead to higher 
excitation states of neurons  [91]. Therefore, if NMDA activity 
is increased, it may lead to neuronal cell death and further 
major depression. However, on the other hand, this activation 
may contribute to the proper functioning of active ion channels 
and the ensuing signal transduction that are a prerequisite 
for the physiological functions of neurons, for example 
neurotransmitter release.

More direct evidence of the otential antidepressant  
properties of sigma ligands have been reported from the studies 
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involving SA-4503, (+)- pentazocine, DTG, JO-1784 and 
SKF-10047, all sigma agonists that have been shown to dose-
dependently decrease the immobility period in mice subjected 
to FSTs  [92,93]. These drugs are under trial for their therapeutic 
use in major depression.

8.	 Neurosteroids

Neurosteroids are steroidal hormones that are synthesized in 
the central nervous system either de novo from cholesterol or 
from steroid hormone precursors; they are involved in a 
wide variety of psychopathological processes  [94]. Several 
neurosteroids have been shown to be formed de novo in 
mammalian brain via classical steroid metabolic pathways  [95,96]. 
It is suggested that neurosteroids are biosynthesized during 
embryogenesis and the development of the nervous system.

These neurosteroids are known to modulate mainly GABAA 
receptors, but also calcium channels, NMDA, sigma, and 
glycine receptors, respectively  [94]. Non-conjugated metabolites 
of progesterone such as allopregnanolone are potent positive 
modulators of GABAA receptors. They open ion channels for 
Cl- and are known to possess analgesic, hypnotic, anxiolytic 
and anticonvulsant effects. By contrast, neurosteroids such as 
dehydroepiandrosterone and its sulfate are negative modulators 
of GABAA receptors acting as excitants and proconvulsants. 
They are able to positively modulate NMDA receptors and 
open Ca2+ ion channels  [94].

Neurosteroids are shown to have antidepressant actions  [97]. 
A recent clinical study has demonstrated the antidepressant 
activity of fluoxetine and fluvoxamine: both selective serotonin 
reuptake inhibitors are correlated with an ability to increase 
the brain and cerebrospinal fluid content of allopregnanolone, 
a potent positive allosteric modulator of gamma-aminobutyric 
acid, at GABAA receptors  [98]. Similarly, it was found that 
fluoxetine and norfluoxetine are active in improving the behavior 
of socially isolated mice at a dose that does not affect 
serotonin neurotransmission, the mechanism being through 
upregulation of neurosteroid contents in the brain  [98]. In a 
preclinical investigation, the neurosteroid allopregnanolone 
(3α-hydroxy-5α-pregnan-20-one) was observed to have 
antidepressant-like activity in mouse FSTs  [99]. This action is 
potentiated by the additional administration of muscimol 

and blocked by bicuculline, suggesting the involvement 
of GABAergic neurotransmission in its antidepressant-like 
action  [99]. It has been found out that the GABAA receptor 
containing delta subunit is essential for the enhanced activity 
of neurosteroids  [100]. The δ-subunit containing GABAA receptors 
are found exclusively at extrasynaptic sites, and these receptors 
can be activated by GABA overspill in the molecular layer  [101]. 
Neuroactive steroids are known to specifically enhance a 
tonic inhibitory conductance in central neurons that is mediated 
by extrasynaptic δ subunit-containing GABAA receptors further 
leads to decreases in neuronal excitability  [102].

THIP (4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol, 
Gaboxadol) is a selective GABAA receptor agonist, acting in vitro 
with high potency and efficacy at the extrasynaptic GABAA 
delta-containing receptors  [103]. Similar to these findings, it has 
been shown that neurosteroids such as 5alpha-pregnan-3alpha-ol, 
20-one and ganaxolone positively modulate the firing activity 
of dorsal raphe nucleus serotonergic neurons in female rats  [104]. 
It has been revealed that testosterone and 17-β estradiol 
increased the firing activity of serotonergic neurons in both 
male and female rats  [104]. A similar study from our laboratory 
has demonstrated the antidepressant-like activity of 17-β estradiol 
in mice. It was shown that it is the β-isomer of estradiol (not 
the α-isomer) that is active in both FSTs and TSTs, and this 
involves monoaminergic neurotransmission  [66]. Neurosteroids 
may find clinical applications in the treatment of postpartum 
depression. It has been found that a large increase in proges-
terone-derived neurosteroids during pregnancy and their 
precipitous decline at parturition may lead to depression in 
females; this can be corrected by the administration of  
neurosteroids such as gaboxadol  [105].

Analysis of the cerebrospinal fluid levels of neuroactive 
steroids in healthy volunteers suffering from major depression 
revealed that pregnenolone is decreased in subjects  
with affective illness, particularly during episodes of severe 
depression  [106]. Administration of dehydroepiandrosterone 
to the patients suffering from Alzheimer’s disease resulted in 
improvement in mood, energy, confidence, interest and 
activity levels. Interestingly, both pregnenolone and dehydroepi-
androsterone are negative modulators of GABAA receptors  [94], 
yet they possessed antidepressant activity. In one recent study, 
it has been proposed that reduced dehydroepiandrosterone may 
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be associated with the early onset of depressive behavior  [107]. 
In another study, it has been suggested that progesterone 
may enhance the serotonin-stimulated gene expression of brain-
derived neurotrophic factor, which is considered to contribute 
to the survival, regeneration, and plasticity of neuronal cells 
in the brain, hence leading to the improvement of mood 
disorders and other symptoms in depressive patients  [108].

The cross-talk between antidepressant-like effects of  
neurosteroids and sigma-1 receptor modulation is the topic 
of debate, suggesting a role for central sigma receptors in the 
antidepressant-like effects of neurosteroids (discussed below). 
In our previous studies, moderate doses of dehydroepi-
androsterone sulfate or pregnenolone sulfate displayed an 
antidepressant-like effect in the FST, which is sensitive to 
NE-100, a putative sigma-1 receptor antagonist, or progesterone, 
a neurosteroid sigma receptor antagonist  [109]. Recently, in 
another study, we have also elucidated the role of sigma receptor 
modulation in the antidepressant action of pregnenolone 
sulfate and dehydroepiandrosterone sulfate in the TST in mice. 
Pregnenolone sulfate and dehydroepiandrosterone sulfate both 
displayed antidepressant-like activity in TSTs (Figures 6 and 7). 
It was concluded that the antidepressant activity of preg-
nenolone sulfate and dehydroepiandrosterone sulfate is antag-
onized by prior treatment with progesterone (a neurosteroid 
sigma receptor antagonist), rimcazole (sigma receptor antagonist) 
and, more interestingly, with BD-1047 (a novel specific sigma-1 
receptor antagonist)  [85].

More importantly, neurosteroids are shown to have  
antidepressant activity in FSTs, possibly by modulating the 
sigma-1 receptors  [110]. Sigma-1 receptor agonists are known 
to enhance the firing rates of serotonergic neurons in the 
dorsal raphe nucleus area of the brain  [111]. Sigma receptors 
may rapidly modulate the NMDA receptor-mediated transmis-
sion in the hippocampus, and potentially other forebrain 
regions, which in turn would lead to modulation of serotonergic 
neurotransmission in the dorsal raphe nucleus  [112]. Also, 
although many studies have suggested the therapeutic relevance 
of neuroactive steroids in neuropsychiatric diseases, including 
major depression, there are currently no neuroactive steroids 
used in clinical practice. Examining the clinical use of these 
neuroactive steroids in the treatment of major depression 
may be warranted.

9.	 Agomelatine

Circadian rhythms are considered an important factor in the 
etiology, expression and treatment of major depression  [113]. 
It has been observed that most patients suffering from major 
depression have more severe symptoms during the daytime, 
compared with the night hours. Therefore, it is speculated 
that there is some chronobiology involved in the major 
depression symptomology. Melatonin, a chronobiotic agent, 
is considered to be nature’s most versatile biological  
signal  [114]. It is a hormone secreted by the rudimentary 
pineal gland present in the brain that is involved in the 

regulation of circadian rhythm. Melatonin is known to 
interact with different neurotransmitter systems via its two 
major receptors, MT1 and MT2. These G-protein-coupled 
receptors are expressed in various parts of the central  
nervous system (suprachiasmatic nuclei, hippocampus, cerebellar 
cortex, prefrontal cortex, basal ganglia, substantia nigra, ventral 
tegmental area, nucleus accumbens and retinal horizontal, 
amacrine and ganglion cells) and in peripheral organs (blood 
vessels, mammary gland, gastrointestinal tract, liver, kidney 
and bladder, ovary, testis, prostate, skin and immune  
system)  [115]. Melatonin is known to modulate the serotonergic 
system in the body and alters the circadian phase-setting,  
sexual behavior, sleep-wake cycle and neuroendocrine 
effects  [116]. Similarly, melatonin is known to influence  
dopaminergic, GABAergic, opioidergic system and cholinergic 
systems in the body  [116].

Alterations in melatonin receptor expression as well as 
changes in endogenous melatonin production have been 
shown in circadian rhythm sleep disorders, Alzheimer’s and 
Parkinson’s diseases, glaucoma, depressive disorder, breast 
and prostate cancer, hepatoma and melanoma  [116]. In one 
preclinical study, melatonin has been shown to possess  
antidepressant-like activity in FSTs. Melatonin is known to 
enhance the antidepressant-like effect of imipramine in the 
FST  [117]. Similarly, melatonin is also known to be effective 
in mouse TSTs through modulation of NMDA receptors 
and the L-arginine-nitric oxide pathway  [118]. In one of  
the studies carried out in our laboratory, it has been demon-
strated that melatonin has antidepressant action in chronic 
FST-induced despair behavior by an action involving peripheral 
benzodiazepine receptors  [119].

Agomelatine (a synthetic analog of the hormone melatonin), 
a compound with agonistic properties at MT1 and MT2 
receptors and antagonistic properties at the 5-HT2C  
serotonin receptor, is a novel agent that is under late-stage 
development as a potential antidepressant  [120-122]. In one 
study carried out by Millan and colleagues, agomelatine was 
found to be antagonist at 5-HT2B and 5-HT2C receptors. It 
has been speculated that blockade of 5-HT2C serotonin 
receptors reinforces frontocortical adrenergic and dopaminergic 
transmission, and thus shows antidepressant action  [123]. It 
has no measurable affinity to any other known receptor. In 
one of the double-blind randomized clinical studies using 
25 mg/day of agomelatine in a large patient population 
(238 patients), agomelatine was significantly more efficacious 
than placebo, with an agomelatine/placebo difference of 
3.44 (p < 0.001) using the Hamilton Depression Rating Scale 
(HAMD) final total score  [124]. Agomelatine is an efficacious, 
safe antidepressant but does not possess any major efficacy 
advantages when compared with other antidepressant 
drugs  [124]. The most common adverse effects reported with 
agomelatine use are headache, nasopharyngitis, and gastro-
intestinal complaints, effects that are also observed with 
conventional antidepressants  [125]. Agomelatine is expected 
to be available on the market by the year 2009.
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10.	 Glutamatergic	modulators

Glutamate, a major excitatory neurotransmitter in the  
brain, may be a promising target for a novel antidepressant 
therapy  [126]. Glutamate acts by stimulation of two distinct 
groups of receptors: ionotropic glutamate receptors (includ-
ing NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid receptor [AMPA] and kainate receptors), 
which are coupled to ion channels, and metabotropic  
glutamate receptors (mGluRs), a family of G-protein-coupled 
receptors  [126]. The mGluRs are additionally divided  
into three groups according to their sequence homology, 
effector coupling and agonist selectivity. Group I mGluRs 
(mGlu 1 and mGlu 5) are coupled to the phosphatidylinosi-
tol hydrolysis/Ca2+ signal transduction pathway, while  
group II (mGluR2 and mGluR3) and group III mGluRs 
(mGluR4, mGluR6, mGluR7, mGluR8) are both coupled  
in an inhibitory manner to the adenylyl cyclase signal  
transduction pathway  [127].

In 1990, Trullas and Skolnick provided the first evidence 
that the NMDA subtype of glutamate receptors may be 
involved in the pathophysiology of major depression. It was 
observed that NMDA receptor antagonists – 2-aminophos-
phoheptanoic acid (competitive NMDA receptor antagonist) 
or MK-801 (non-competitive NMDA receptor antagonist) – 
reduce the immobility period of mice in the FST  [128]. 
MK-801 has been thoroughly investigated in various animal 
models of depression and was effective in FSTs in rats  [129] and 

mice  [130,71], as well as TSTs in mice  [118,131], foot-shock-induced 
fighting behavior in chronically stressed rats  [132], chronic mild 
stress model of depression  [133] and the olfactory bulbectomy 
model of depression  [134], respectively.

The molecules, which are capable of reducing neurotrans-
mission at the NMDA receptors complex, might represent a 
new class of antidepressant drugs. However, these drugs are 
often associated with an adverse side-effect profile, which limits 
their use in psychiatry. These drugs are known to produce 
psychomimetic effects and neurodegeneration that further leads 
to disturbed motor performances. Further, their higher doses 
may lead to cognitive decline, ataxia and muscle relaxation  [135]. 
However, the newly discovered NMDA receptor antagonist, 
memantine, has been shown to have promising antidepressant-
like effects in preclinical studies and is free of the adverse effects 
that are typical of high-affinity NMDA receptor blockers  [136]. 
However, in one of the clinical studies, memantine failed to 
display any antidepressant-like activity  [137]. The study was a 
double-blind, placebo-controlled study carried on 32 subjects 
with major depression  [137].

Ketamine (ketamine hydrochloride), another NMDA 
receptor antagonist, was found to possess antidepressant 
activity in clinical situations. Ketamine is known to exhibit  
a significant reduction in HAMD scores after 40 min of  
its infusion (0.5 mg/kg), and can be beneficial to patients  
not responding to conventional antidepressant therapy  [138,139]. 
It has been demonstrated that acute administration of  
ketamine elicits antidepressant-like effects in rats by enhancing 
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Figure	6.	Effects	of	neurosteroid	dehydroepiandrosterone	sulfate	(DHEAS)	and	pregnenolone	sulfate	(PS)	on	the	immobility	
period	during	the	6-min	tail	suspension	test	in	mice. DHEAS (10 – 40 mg/kg, s.c.) or PS (10 – 40 mg/kg, s.c.) was administered 
30 min before the swimming test. Values are expressed as mean ± SEM (n = 6 animals per group). Data were analyzed by one-way analysis 
of variance (ANOVA) followed by Dunnett’s test. [85].
*p < 0.05 compared with vehicle-treated group.
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hippocampal brain-derived neurotrophic factor protein  
levels  [140]. However, by contrast, it has been shown that  
ketamine neither produces antidepressant-like effects in 
rodents nor does it display antidepressant-like behavioral or 
neurochemical effects after chronic treatment  [141]. Other  
antiglutamatergic agents, such as lamotrigine (Lamictal® 
[GlaxoSmithKline, PA, USA], through blockade of voltage-
sensitivity sodium channels and stabilization of the neuronal 
membrane), have demonstrated potential antidepressant efficacy 
and may be useful in the treatment of resistant depression  [142,143]. 
The antidepressant property of folic acid is also dependent on 
the inhibition of NMDA receptors  [144].

A reduction in NMDA receptor reactivity has been also 
been found after chronic treatment with both classic and 
atypical antidepressants. In 1999, Skolnick proposed that 
brain-derived neurotrophic factor (BDNF) may be the mediator 
linking the action of conventional antidepressants and attenu-
ation of NMDA receptor function  [145]. As discussed previously, 
it is known that chronic treatment with antidepressants causes 
an increase in the expression of BDNF mRNA  [146]. Further, 
BDNF was shown to decrease NMDA receptor function, thus 
producing an effect similar to that produced by NMDA 
receptor antagonists  [147].

Contrary to this, AMPA (alpha-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid) receptor potentiators are known 
to have antidepressant-like action  [148,149]. It has been found 
that mice with deletion of the main AMPA receptor subunit 
GluR-A represent a depression model, and display various 
behavioral and neurochemical features of human major 
depression. Also, chronic treatment with LY-451646, an 
AMPA receptor potentiator, increases cell proliferation in 
the adult rat hippocampus  [150]. Further, AMPA receptor 
activation has been shown to increase the expression of 
BDNF  [145]. It has been suggested that ketamine, a NMDA 
receptor antagonist, might exert rapid antidepressant-like 
effects by enhancing AMPA relative to NMDA receptors in 
critical neuronal circuits  [151].

More recent studies have indicated that antagonists  
of group I mGluRs (mGluR1 and mGluR5) produce  
antidepressant-like effects in behavioral tests in rodents  [152,153]. 
Antagonists of mGluR5, MPEP (2-methyl-6-[phenylethynyl]-
pyridine) reduced the immobility period in TSTs in mice 
without affecting locomotor activity  [134]. Moreover,  
repeated MPEP administration reversed the olfactory bul-
bectomy-induced behavioral deficits, similar to the classic 
antidepressant desipramine  [154]. The mechanism behind the 
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Figure	7.	Representative	recordings	of	tail-suspension	test	of	pregnenolone	sulfate	and	dehydroepiandrosterone	sulfate.
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antidepressant-like effect of group I mGluR antagonists may 
be connected with their ability to reduce NMDA receptor 
activity, which was observed in several brain areas  [152].

Similarly, group II mGluR antagonists MGS-0039 and 
LY-341495 dose-dependently reduced the immobility time 
of mice in TSTs  [155]. It has been demonstrated that repeated 
administration of MGS-0039 increases cell proliferation in 
the adult mouse hippocampus  [156].

Little is known about the potential antidepressant activity 
of group III mGluRs ligands, as they are not systemically 
active drugs. ACPT-1, a group III mGluR agonist, as well as 
RS-PPG, a mGluR8 agonist, produced a dose-dependent 
decrease in the immobility time of rats in FSTs  [157]. However, 
the exact mechanisms of glutamatergic neurotransmission 
have to be explored in major depression.

11.	 5-HT6	serotonin	receptor	modulators

Dysfunction in the serotonergic system is a well-established 
theory explaining the pathophysiology of major depression. 
The effect of serotonin is known to be mediated through 
serotonin receptors, of which at least 13 molecular subtypes 
have been identified. These include three major receptor 
families such as 5HT1A, 5HT2A/C, and 5 HT3, respectively  [158]. 
These receptors are present both at pre- and postsynaptic sites, 
in addition to their location on serotonergic nerve-cell bodies.

5-HT6 receptors are mainly located in the limbic areas of 
the brain, and are therefore known to play an imperative role 
in the pathophysiology of major depression. The molecular 
mechanism is not clear; however, it is hypothesized to act by 
activating the extracellular signal-regulated kinase1/2 via 
Fyn-dependent pathway  [159]. It has been demonstrated that 
SB-399885 (N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-
3-(1-piperazinyl)benzenesulfonamide), a 5-HT6 receptor 
antagonist, is effective in FSTs. The effect, comparable to 
that of imipramine, is independent of any lack of motor 
coordination in mice and rats as tested in the rota- 
rod test  [160]. Similarly, SB-258585, another selective 5-HT6 
receptor antagonist, when administered intrahippocampally 
to rats, is known to be active in the FST  [161]. Interestingly, 
5-HT6 receptor antagonists also act as cognitive enhancers  [162]; 
this property may be beneficial for depressed patients. 5-HT6 
receptors are also known to play an important role in  
the mechanism of various antidepressants, particularly selec-
tive serotonin reuptake inhibitors. It has been demonstrated 
that SB271046, a 5-HT6 receptor antagonist, significantly 
counteracted the stimulatory actions of fluoxetine on corti-
cal c-fos mRNA, phospho-Ser845-GluR1, and in the tail 
suspension antidepressant assay, whereas it had no effect on 
these parameters by itself  [163].

12.	 5-HT7	serotonin	receptor	modulators

Recently, the 5-HT7 serotonin receptor has been known to 
play an important role in the pathophysiology of major 

depression, and the antagonists of these receptors are known 
to possess antidepressant action  [164]. It is also known that 
the administration of selective serotonin reuptake inhibitors 
downregulates 5-HT7 serotonin receptors, suggesting its crucial 
role. Studies have shown that 5-HT7 serotonin receptor 
knockout mice display antidepressant-like behaviors. It has 
been demonstrated that (2R)-1-[(3-hydroxyphenyl)sulfonyl]-
2-[2-(4-methyl-1-piperidinyl)ethyl]-pyrrolidine (SB269970), 
a potent and selective 5-HT7 serotonin receptor antagonist, 
is known to decrease the immobility time in FSTs. It has 
further been demonstrated that SB269970 (0.3, 1 and 3 μg) 
showed an anticonflict effect in a conflict drinking model which 
was weaker than that of diazepam (40 μg), whereas the same 
compound at doses of 3 and 10 μg had marked antidepres-
sant-like action comparable to that of imipramine (0.1 
μg)  [165]. Further, SB269970 also enhanced the antidepres-
sant-like action of some of the standard agents such as imi-
pramine, desipramine, citalopram or moclobemide  [165].

Similarly, one study has explored the sleep-promoting 
ability of 5-HT7 serotonin receptors antagonists. It has been 
demonstrated that SB-269970 and SB-656104-A, 5-HT7 
serotonin receptor antagonists, increased the latency to rapid 
eye movement (REM) sleep and reduced the amount of 
time spent in it; therefore, blockade of 5-HT7 receptors may 
provide a novel therapy to alleviate sleep disturbances 
associated with major depression  [166]. In rats, SB-269970 is 
known to potentiate the citalopram-induced increase in 
REM latency and the decreased duration of REM sleep  [167]. 
The mechanism of action of these antagonists as an antide-
pressants are not clear; however, it is expected that 5-HT7 
serotonin receptors also affect neuronal activity.

It has been observed that AS-19, a 5-HT7 serotonin receptor 
agonist, inhibits the firing activity of dorsal raphe serotonergic 
neurons, the action being antagonized by SB-269970, a 5-HT7 
serotonin receptor antagonist. Similarly, 5-HT7 receptor 
antagonists promote the hippocampal neurogenesis  [168] and 
can also be considered a promising target for the treatment of 
obsessive-compulsive disorder  [169].

13.	 Other	approaches

13.1	 Beta-3	adrenoceptor	agonists
Besides β-1 and β-2, β-3 receptors are also known to  
contribute to the pathophysiology of major depression. The 
mechanism is yet not clear; however, it has been hypothe-
sized that β-3 adrenoceptor activation results in an increase 
in the brain tryptophan content, which in turn leads to an 
elevation of brain serotonin synthesis  [170]. It has been dem-
onstrated that amibegron (SR-58611A), a selective β-3 receptor 
agonist, has antidepressant-like effects and significantly 
reduced immobility in Flinders Sensitive Line (FSL) rats  [171]. 
In another study, SR-58611A proved active in FSTs; the 
effect was comparable to that of clomipramine, a tricyclic 
antidepressant. The molecule also prevented excessive grooming 
in a novel environment (novelty-induced grooming test), 
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which is consistent with an anxiolytic-like effect. The anti-
depressant action of SR-58611A is sensitive to SR-59230A, 
a β-3 receptor antagonist  [170]. Similarly, SR-58611A has 
also demonstrated marked anxiolytic-like effects in animal 
models  [172]. Therefore, it is speculated that stimulation of 
the β-3 adrenoceptor may prove to be a novel treatment 
strategy for anxiety and depressive disorders.

13.2	 Vasopressin	V(1b)	receptor	antagonist
It has been shown that vasopressin possesses the ability to 
potentiate the stimulatory effect of corticotropin releasing 
factor and thus is critical for adaptation of the HPA axis 
during stress  [173]. Vasopressin V(1b) receptor s are located 
in the limbic region of the brain, thus playing an important 
role in the control of emotional processes  [174]. These receptors 
are also located in the lateral septum, the amygdala, the bed 
nucleus of the stria terminalis, the hippocampal formation, and 
in several cortical areas. Vasopressin V(1b) receptor antagonists 
are known to possess antidepressant activity  [175]. In one of 
the studies, SSR-149415 ((2S, 4R)-1-[5-chloro-1-[(2,4-
dizzmethoxyphenyl)sulfonyl]-3-(2-methoxyphenyl)-2-oxo-2, 
3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrro-
lidinecarboxamide), a non-peptide vasopressin V(1b) receptor 
antagonist, reversed the hyperactivity in olfactory bulbecto-
mized Wistar rats; the effect was persistent even 7 days after 
cessation of treatment  [176].

It has been demonstrated that chronic treatment of  
SSR-149415 is required to observe the antidepressant effect in 
olfactory bulbectomy. Similarly, SSR-149415 produced anxi-
olytic-like activity in models involving traumatic stress expo-
sure, such as the social defeat paradigm and the defense test 
battery  [174]. SSR-149415 also increased the time spent in social 
interaction in FSL rats  [177]. It has been shown that V1b recep-
tors located in the lateral septum participate in the antidepres-
sant- but not the anxiolytic-like action of SSR-149415 in 
rats  [175]. SSR-149415 is known to block the release of adreno-
corticotrophic releasing hormone, noradrenaline release and 
hyperthermic responses following various stress exposures  [173]. 
Further, the molecule is safe and devoid of any adverse effects 
on motor activity, sedation, memory or cognitive functions and 
produces no tachyphylaxis when administered repeatedly  [178].

13.3	 NK2	tachykinin	receptor	antagonists
The mammalian tachykinins (substance P, neurokinin A and 
neurokinin B) act as neurotransmitters and neuromodulators 
by acting on NK1, NK2, and NK3 receptors, respectively. It 
has been demonstrated that NK1, NK2 and NK3 receptor 
antagonists have antidepressant-like activity. MK-869 
(aprepitant), a NK1 receptor antagonist, has been investigated 
for its antidepressant effect in clinics, but the results were 
disappointing and further clinical development was suspended 
on this molecule. NK1 knockout mice have also been 
developed  [179]. One study demonstrated that saredutant  
(a NK2 receptor antagonist) and osanetant (a NK3 receptor 
antagonist) produced anxiolytic-like effects in the gerbil social 

interaction test. Interestingly, the effect was similar to that 
obtained with the vasopressin 1b receptor antagonist  
SSR-149415  [180]. SR-48968, a selective non-peptide NK2 
receptor antagonist, is known to decrease flight reactions, risk 
assessment behavior, defensive biting and escape attempts  [181]. 
SR-48968, a NK2 receptor antagonist, is known to increase the 
expression of the cyclic adenosine monophosphate response-element 
binding protein mRNA in the rat hippocampus after repeated 
but not acute administration  [182]. In one of the studies, treat-
ment of rats with saredutant exhibited more active behavior 
in the FST after previous exposure to stressors  [183].

13.4	 Glucocorticoid	receptor	antagonists
The hypothalamic region of the brain is known to play an 
important role in producing various neurovegetative symptoms 
in major depression, including too much or too little sleep, 
appetite, and energy, as well as a loss of interest in sex and 
other pleasurable activities  [184]. Excessive activation of the 
HPA axis has been demonstrated in individuals suffering 
from major depression  [185]. Activation of this axis may lead 
to increased release of glucocorticoids such as cortisol, which 
may damage hippocampal neurons and produce cognitive 
impairment in depressed patients (Figure 8). Glucocorticoid 
such as dexamethasone is known to prevent brain-derived 
neurotrophic factor-mediated maturation of synaptic function 
in developing hippocampal neurons  [186]. Therefore, it is 
hypothesized that glucocorticoid receptor antagonists have 
antidepressant properties.

In one study, subchronic treatment with RU-43044, a  
glucocorticoid receptor antagonist, decreased the immobility 
period in the FST in chronic corticosterone-treated and isola-
tion-reared mice, but not in the control mice. It is necessary to 
mention that chronic corticosterone administration and isola-
tion rearing increases the depressive-like behavior in a glucocor-
ticoid receptor-dependent manner  [187]. Further, glucocorticoid 
receptor antagonists are also known to improve insomnia in the 
depressed condition  [188]. In conclusion, glucocorticoid antagonists 
may be of use for treatment-resistant major depression.

13.5	 Corticotropin	releasing	factor-1	(CRF-1)	receptor	
antagonists
Corticotropin-releasing factor (CRF) is known to play a 
crucial role in the proper functioning of the stress response 
system through its actions on its receptors, CRF receptor 1 
(CRF1) and CRF receptor 2 (CRF2)  [189]. It has been dem-
onstrated that there is hyperstimulation of CRF1 receptors 
in the pathophysiologies of major depression and anxiety  [189]. 
CRF1 receptor antagonists have become the novel target in 
the treatment of major depression. Therefore, CRF1 antagonists 
are being developed for the treatment of affective disorders. 
Chronic administration with antalarmin, a CRF1 receptor 
antagonist, led to an improvement of chronic mild stress-induced 
decrease of physical state, body weight gain and blunted 
emotional response in the light/dark test  [190]. In the FST, 
CP-154,526 shows a different profile in mice and rats. 
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Interestingly, the compound was active in rat FST but inactive 
in mouse models  [191].

In another study, 1-[8-(2,4-dichlorophenyl)-2-methylquinolin-
4-yl]-1,2,3,6-tetrahydropyridine-4-carboxamide benzenesulfonate 
(R-278995/CRA-0450), a CRF1 receptor antagonist, showed 
dose-dependent antidepressant-like effects in the rat learned 
helplessness paradigm and the olfactory bulbectomy model. 
However, the compound was inactive in mouse FSTs  [192]. 
R-121919, another CRF1 receptor antagonist, is known to dose-
dependently attenuate the swim stress-induced anxiogenic-like 
behavior in the elevated plus-maze model of anxiety  [193].

NBI-30775/R-121919 has a clinical profile comparable to 
that of the antidepressant paroxetine  [185]. DMP-696 and 
DMP-904, a non-peptidergic CRF1 receptor antagonist 
known to exhibit > 1000-fold selectivity for CRF1 over CRF2 
receptors, were effective as anxiolytic agents; however, the 
compounds were found to be ineffective in the learned help-
lessness paradigm task  [194]. In one clinical study, R-121919 
was found to be effective in treating 20 depressed patients  [195]. 
However, in another study, CRF1 receptor antagonist failed to 
display any antidepressant effect  [196].

Similar to CRF1, CRF2 has been found to play a major 
role in the pathophysiology of major depression. It has been 
demonstrated that CRF2 knockout mice display increased 
hippocampal levels of activated (phosphorylated) mitogen-
activated protein kinase (MAPK)/ERK kinase (MEK), extra-
cellular signal-regulated kinases 1 and 2 (ERK1/2), and ribosomal 
protein S6 kinases 1 (RSK1), the effect being reversed by 
CRF2 receptor antagonists  [189]. However, further confirmatory 
studies are required to establish the use of CRF1 receptor 
antagonists in major depression.

13.6	 Berberine
Berberine, an isoquinoline alkaloid obtained from an array of 
plants, has been used in the Indian and Chinese system of 
medicines as an antimicrobial, stomachic, bitter tonic and in 
the treatment of oriental sores. Some of the plant sources of 
berberine include the roots, rhizomes, and stem bark of 
Hydrastis canadensis (goldenseal; Ranunculaceae), Coptis chinensis 
(coptis or goldenthread; Ranunculaceae), Berberis aquifolium 
(Oregon grape; Berberidaceae), Berberis vulgaris (barberry; 
Berberidaceae), Berberis aristata (tree turmeric; Berberidaceae), 
and Berberis thunbergii (red barberry; Berberidaceae). Recent 
evidence supports the antidepressant-like action of berberine  [67,68]. 
In our laboratory, we have demonstrated that berberine is 
active in FSTs and TSTs  [67,68].

It has been demonstrated that berberine modulates the 
monoaminergic neurotransmission in the brain. Berberine 
enhanced the antidepressant activity of various typical antide-
pressants: imipramine (tricyclic antidepressant), fluoxetine 
(selective serotonin reuptake inhibitor), venlafaxine (dual 
reuptake inhibitor of serotonin and norepinephrine), and 
bupropion (dopamine reuptake inhibitor). Berberine also 
reversed the depression-like syndrome induced by reserpine in 
animals  [67]. It was found that berberine (both acute and 
chronic administration) modulates the brain levels of norepi-
nephrine, serotonin and dopamine; thus, it may be categorized 
as triple reuptake inhibitor.

Following its acute administration in mice, berberine  
(5 mg/kg, i.p.) resulted in increased levels of norepinephrine 
(31%), serotonin (47%) and dopamine (31%) in the whole 
brain  [67]. Chronic administration of berberine (5 mg/kg, i.p.) 
for 15 days significantly increased the levels of norepinephrine 
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(29%) and serotonin (19%), as well as dopamine (52%). At a 
higher dose (10 mg/kg, i.p.), there was no change in the 
norepinephrine (12%) levels, but a significant increase in the 
serotonin (53%) and dopamine (31%) levels was found  [68]. 
Also, the monoamine oxidase-A inhibiting property of berberine 
is known in the literature.

Our further extensive studies have demonstrated the 
involvement of the nitric oxide pathway in the antidepressant-like 
action of berberine chloride  [67]. The antidepressant-like effect 
of berberine in FSTs was prevented by pretreatment with 
L-arginine (750 mg/kg, i.p.) or sildenafil (5 mg/kg, i.p.) (Figure 9). 
By contrast, pretreatment of mice with 7-nitroindazole (7-NI) 
(25 mg/kg, i.p.) or methylene blue (10 mg/kg, i.p.) potentiated 
the effect of berberine (2 mg/kg, i.p.) in the FSTs (Figure 9). 
Similarly, the role of sigma-1 receptors in the antidepressant-
like action of berberine was demonstrated  [68]. Pretreatment 
of mice with (+)-pentazocine, a high-affinity sigma-1 receptor 
agonist, produced synergism with a subeffective dose of 

berberine. Pretreatment with various sigma receptor antagonists – 
progesterone, rimcazole and N-[2-(3,4-dichlorophenyl)ethyl]-
N-methyl-2-(dimethylamino)ethylamine (BD-1047) – reversed 
the anti-immobility effects of berberine.

Various studies have demonstrated that berberine is a safe 
drug when used within therapeutic doses. Berberine lacks any 
genotoxic, cytotoxic or mutagenic activity, which supports its 
clinical use in a wide variety of situations in humans.

13.7	 Curcumin
Curcumin is the principal curcuminoid of the popular Indian 
curry spice, turmeric (Curcuma longa, Zingiberaceae), and has 
been found to be useful in almost all bodily disease, including 
its recently explored use in neurodegenerative and neuropsychiatric 
disorders. There is considerable evidence, including findings 
from our laboratory, to support the antidepressant-like activity 
of curcumin  [197,198], which can be potentiated by the 
concomitant administration of fluoxetine, venlafaxine, or 
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Figure	9.	 Effect	of	berberine	and	 its	modification	by	 (A) L-Arginine (750 mg/kg, i.p.), (B) 7-nitroindazole (25 mg/kg, i.p.), (C) 
Methylene blue (10 mg/kg, i.p.), (D) Sildenafil (5 mg/kg, i.p.) on the mean immobility period in mouse forced swim test. The values are 
expressed as mean ± S.E.M. (n = 6 – 8). Data were analysed by two-way analysis of variance (ANOVA) followed by Dunnett’s test.
*p < 0.05 compared with respective vehicle-treated group. 
‡p < 0.05 compared with 7-nitroindazole (25 mg/kg, i.p.)-treated group. 
§p < 0.05 compared with methylene blue (10 mg/kg, i.p.)-treated group. 
¶p < 0.05 compared with berberine (5 mg/kg ,i.p.)-treated group [67].
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bupropion  [197]. However, no significant change in the anti-
immobility effect of imipramine and desipramine was 
observed  [197]. When alterations in brain levels of monoamines 
were checked following curcumin administration, it was observed 
that it increased serotonin as well as dopamine levels (at higher 
doses), without affecting norepinephrine levels  [197]. Biochemically, 
this herbal molecule is also known to inhibit the monoamine 
oxidase enzymes (both MAO-A and MAO-B, higher doses) 
in mice  [196].

When administered along with curcumin (20 and 40 mg/kg, 
i.p.), the bioavailability-enhancing agent piperine (2.5 mg/kg, 
i.p.), obtained from Piper nigrum Linn and Piper longum 
Linn, resulted in enhanced antidepressant-like action and 
increased brain penetration  [197]. In another study, the 
involvement of 5-HT1 and 5 HT2 serotonin receptors was 
elucidated in the antidepressant-like action of curcumin. It 
was found out that p-chloro-phenylalanine (PCPA), a tryp-
tophan hydroxylase (rate-limiting enzyme for the synthesis 
of serotonin) inhibitor, blocked the antidepressant-like effect 
of curcumin in FSTs  [198].

Moreover, pretreatment of pindolol (10 mg/kg, i.p., a 
β-adrenoceptor blocker/5-HT1A/1B receptor antagonist),  
4 - (2 ′ -methoxy-phenyl ) -1- [2 ′ - (n-2 ′ ′ -pyr id iny l ) -p-
iodobenzamino-]ethyl-piperazine (p-MPPI, 1 mg/kg, s.c., a 
selective 5-HT1A receptor antagonist), or 1-(2-(1-pyrrolyl)-
phenoxy)-3-isopropylamino-2-propanol (isamoltane, 2.5 mg/kg, 
i.p., a 5-HT1B receptor antagonist) were found to prevent the 
effect of curcumin (10 mg/kg) in FSTs  [198]. In contrast, curcumin 
produced synergism when administered concomitantly with 
(+)-8-hydroxy-2-(di-n-propylamino)tetralin, (8-OH-DPAT, a 
5-HT1A receptor agonist), anpirtoline (0.25 mg/kg, i.p., a 5-HT1B 
receptor agonist) or ritanserin (4 mg/kg, i.p., a 5-HT2A/2C 
receptor antagonist), but not with ketanserin (5 mg/kg, i.p., a 
5-HT2A/2C receptor antagonist with higher affinity to 5-HT2A 
receptor) or R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopro-
pane (DOI, 1 mg/kg, i.p., a 5-HT2A receptor agonist)  [199].

Curcumin is also known to reverse olfactory bulbectomy-
induced major depression  [200]. It has been observed that 
olfactory bulbectomized animals display low levels of serotonin 
(5-HT), noradrenaline (NA) and high levels of 5-hydroxyin-
doleacetic acid (5-HIAA, metabolite of serotonin) and 4-dihy-
droxyphenylacetic acid (DOPAC, metabolite of dopamine) 
that were completely reversed by administration of curcumin  [200]. 
It has been shown that curcumin displays antidepressant-like 
action by enhancing the action of BDNF and increasing its 
TrkB receptor activity  [201].

In another recent study carried out in our laboratory, 
curcumin was found to be active in unpredictable chronic 
stress-induced behavioral, biochemical and neurochemical 
changes  [198]. Therefore, curcumin may be developed as a 
novel drug for the treatment of major depression.

13.8	 Rutin
Hypericum perforatum is considered to be a ‘modern’ herbal 
antidepressant and rutin is one of the active constituents 

present in this plant extract. It is hypothesized that rutin is 
essential in demonstrating the antidepressant activity of 
Hypericum perforatum extracts in the FST  [202]. Rutin alone 
is known to possess antidepressant-like activity  [203]. The 
compound is known to reduce immobility time in the TST, but 
not in the FST, without altering locomotor activity. It has 
been shown that there is an involvement of the serotonergic 
and noradrenergic systems in its antidepressant-like activity  [203].

14.	 Conclusion

Based on the considerable progress that has been made over 
the past two decades in opur understanding of the disease 
pathophysiology and development of newer target-specific 
drugs, it is hoped that newer strategies in the management of 
major depression will emerge sooner than expected. It is hoped 
that new drugs will be developed that have a faster onset of 
action, better efficacy and fewer long-term side effects.

15.	 Expert	opinion

In spite of the availability of a large number of antidepressant 
agents, the treatment of major depression continues to be a 
challenge for clinicians. It has been hypothesized that major 
depression is multifactorial in nature, and no single gene is 
associated with its pathophysiology. The initial lag period of 
2 – 4 weeks in onset, and the side effects, of currently used 
antidepressant activity are limiting factors. There are no 
appropriate animal model(s) to mimic the human condition 
of clinical major depression in which to test newer drug 
candidates. The value of FST and TST, the two behavioral 
paradigms commonly used in the testing of antidepressant 
drugs, is limited by inter-laboratory variations, and their 
predictive validity is very low: some drugs active in these 
models are not antidepressants in clinical situations.

There is an urgent need to develop newer and more  
sensitive animal models and in vitro testing procedures to 
screen newer antidepressant compounds in order to  
identify lead molecules for clinical trials in major depression. 
The new molecule so discovered should have quick onset  
of action and an improved therapeutic profile, with  
fewer drug–drug interactions and relatively few side effects 
resulting from long-term use. Herbal drugs could prove to  
be an alternative source of therapy, both as main-line  
treatment and as adjunctives.

The newer targets enumerated above need to be explored 
in detail with adequately designed clinical trials to identify 
their role in major depression. The whole area of manage-
ment of major depression, though challenging, offers a great 
opportunity for future studies.
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