CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007

Supporting Information

for

In vitro Synthesis of Novel Enniatins: Probing the α -D-Hydroxy Carboxy Acid Binding Pocket of the Multienzyme Enniatin Synthetase ESyn

Sven C. Feifel, Timo Schmiederer, Till Hornbogen, Holger Berg, Roderich D. Süssmuth, and Rainer Zocher

Table of Contents

I. Experimental section

General techniques	S2
Typical procedure for the enantioselective synthesis of $a ext{-D-hydroxy}$ acids	S2
Analytical and spectral data of <i>a</i> -hydroxy acids	S3
Table of <i>a</i> -hydroxy acids	S8
HPLC-ESIMS and MSMS spectra	S11

I. Experimental

General techniques: All reactions were monitored by thin-layer chromatography carried out on 0.25 mm E.Merck silica gel plates (60F-254) using UV light as visualizing agent and Molybdat or Permanganate solution and heat as developing agents. E. Merck silica gel (60, particle size 0.040 – 0.063 mm) was used for flash column chromatography. Preparative thin-layer chromatography (PTLC) separations were carried out on 0.25, 0.5 or 1mm E. Merck silica gel plates (60F-254). NMR spectra were recorded on a Bruker Advance-400 instrument and calibrated using residual undeuterated solvent as an internal reference. The following abbreviations were used to explain the multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; band, several overlapping signals; b, broad. Optical rotations were recorded on a Perkin-Elmer 241 polarimeter. High-resolution mass spectra (HRMS) were recorded on a Kratos MS 80 RFA mass spectrometer under electron impact ionization (EI) conditions.

Typical procedure for the enantioselective synthesis of a-D-hydroxy acids

a-D-Amino acids; typical procedure: Boc- α -D-amino acid (1.0 mmol, 1.0 equiv) was dissolved in anhydrous CH₂Cl₂ (2 ml), and TFA (1 ml, 22.0 equiv) was added. After stirring for 3 hours at room temperature, the reaction has completed, followed by TLC. When complete, the reaction mixture was treated with saturated aqueous Na₂CO₃ solution until pH 9 was achieved. Then, it was extracted with CH₂Cl₂ (2 x 30 mL), and the combined organic phase where dried over MgSO₄ followed by evaporation of the solvent, obtaining the unprotected amino acid **8** (90-98%) as a white solid.

a-D-Hydroxy carboxylic acids; typical procedure: α -L-amino acid (10.0 mmol, 1.0 equiv) was dissolved in 0.5 M H₂SO₄ (40 ml, 20.00 mmol, 2.0 eqiv). This solution was heated to 60 °C and a solution of sodium nitrite (4.14 g, 60.0 mmol, 6.0 equiv) in H₂O (13.5 ml) was added slowly while stirring, the temperature was maintained. The reaction was stirred at 60 °C for further 3 h, and then allowed to cool down to room temperature and stirred at this temperature for 24 h (followed by TLC to completion). The reaction mixture was extracted with diethyl ether (3 x 50 mL), the organic phases were combined, washed with brine (50 ml) and dried over anhydrous sodium sulfate. The drying agent was filtered off, and the ether was evaporated in vacuo. The residu-

al mass was recrystallized from hexane-ether to give, respective $\alpha\text{-L-hydroxy}$ carbox-ylic acid.

Analytical and spectral data of a-D-hydroxy acids

(R)-2-hydroxy-3-methyl-butyric acid (1)

Yield: 90%; pale white solid; ¹H NMR (400 MHz, DMSO): δ 0.81 (d, ¹J = 6.85, 3H, CH₃), 0.88 (d, ¹J = 6.85, 3H, CH₃), 1.87-1.93 (m, 1H, CH), 3.72 (d, ¹J = 4.57, 1H, CH); ¹³C NMR (100 MHz, DMSO): δ 175.3, 74.5, 31.4, 18.9, 16.7; IR (film): 3423, 3171, 2967, 2936, 2878, 2639, 1720, 1468, 1371, 1254, 1215, 1178, 1137, 1066, 1028; MS: m/z (%) = 119 (5), 99 (2), 85 (8), 76 (100), 55 (40); HRMS m/z calcd for C₅H₁₁O₃: [MH+] 119.0708; found: 119.0710.

(R)-2-hydroxy-propionic acid (2)

Yield: 87%; yellow oil; ¹H NMR (400 MHz, DMSO): δ 1.21 (d, ¹J = 6.85, 3H, CH₃), 2.95 (q, ¹J = 6.90, 1H, CH); ¹³C NMR (100 MHz, DMSO): δ 176.3, 65.7, 20.4; IR (film): 3206, 2990, 2943, 2632, 1729, 1646, 1455, 1376, 1277, 1203, 1124, 1043; MS: m/z (%) = 90 (5), 74 (15), 56 (100); HRMS m/z calcd for C₃H₆O₃: 90.0317; found: 90.0329.

(R)-2-hydroxy-butyric acid (3)

Yield: 79%; yellowish solid; ¹H NMR (400 MHz, DMSO): δ 0.85 (t, ¹J = 7.46, 3H, CH₃), 1.48-1.65 (m, 2H, CH₂), 3.85-3.88 (m, 1H, CH); ¹³C NMR (100 MHz, DMSO): δ 175.7, 70.7, 27.0, 9.5; IR (film): 3449, 2971, 2939, 2883, 2635, 1718, 1460, 1381,

1360, 1333, 1238, 1214, 1128, 1059; MS: m/z (%) = 105 (80), 87 (5), 77 (20), 59 (100); HRMS m/z calcd for $C_4H_9O_3$: [MH+] 105.0551; found: 105.0559.

(R)-2-hydroxy-pentanoic acid (4)

Yield: 95%; pale white solid; 1 H NMR (400 MHz, DMSO): δ 0.85 (t, 1J = 7.32, 3H, CH₃), 1.29-1.38 (m, 2H, CH₂), 1.44-1.61 (m, 2H, CH₂), 3.91 (dd, 1J = 7.79, 2J = 4.57, 1H, CH); 13 C NMR (100 MHz, DMSO): δ 175.9, 69.3, 36.0, 17.9, 13.7; IR (film): 3319, 2963, 2936, 2876, 2645, 1722, 1651, 1467, 1381, 1467, 1381, 1216, 1132, 1075; MS: m/z (%) = 119 (5), 100 (10), 73 (80), 55 (100); HRMS m/z calcd for C₅H₁₁O₃: [MH+] 119.0708; found: 119.0712.

(R)-2-hydroxy-hexanoic acid (5)

Yield: 91%; white solid. ¹H NMR (400 MHz, DMSO): δ 0.84 (t, ${}^{1}J$ = 7.19, 3H, CH₃), 1.21-1.32 (m, 4H, (CH₂)₂), 1.46-1.64 (m, 2H, CH₂), 3.89 (dd, ${}^{1}J$ = 7.79, ${}^{2}J$ = 4.57, 1H, CH); ¹³C NMR (100 MHz, DMSO): δ 175.9, 69.5, 33.6, 26.9, 21.9, 13.9; IR (film): 3459, 2957, 2930, 2874, 2862, 2654, 2589, 1731, 1648, 1467, 1460, 1380, 1271, 1242, 1208, 1134, 1087, 1066, 1056; MS: m/z (%) = 132 (5), 103 (3), 87 (48), 76 (17), 69 (100), 57 (15); HRMS m/z calcd for C₆H₁₂O₃: 132.0786; found: 132.00782.

(R)-2-hydroxy-4-methyl-pentanoic acid (7)

Yield: 88%; yellow solid; ¹H NMR (400 MHz, DMSO): δ 0.86 (d, ¹J = 6.31, 6H, (CH₃)₂), 1.35-1.47 (m, 2H, CH₂), 1.68-1.79 (m, 1H, CH), 3.92 (dd, ¹J = 8.73, ²J =

4.48, 1H, CH); ¹³C NMR (100 MHz, DMSO): δ 176.4, 68.2, 42.9, 23.9, 23.2, 21.5; IR (film): 3186, 2959, 2938, 2872, 2630, 1723, 1651, 1470, 1456, 1388, 1369, 1266, 1271, 1141, 1086; MS: m/z (%) = 132 (5), 113 (8), 99 (15), 87 (75), 76 (35), 69 (100), 57 (22); HRMS m/z calcd for $C_6H_{12}O_3$: 132.0786; found: 132.0788.

(R)-2-hydroxy-3-methyl-pentanonic acid (8)

Yield: 91%; white solid. 1 H NMR (400 MHz, DMSO): δ 0.82 (t, 1J = 7.80, 3H, CH₃), 0.85 (d, 1J = 6.98, 3H, CH₃), 1.10-1.17 (m, 1H, CH₂), 1.36-1.42 (m, 1H, CH₂), 1.62-1.69 (m, 1H, CH), 3.76 (d, 1J = 4.97, 1H, CH); 13 C NMR (100 MHz, DMSO): δ 175.4, 74.0, 38.1, 23.7, 15.4, 11.5; IR (film): 3314, 2966, 2937, 2879, 2625, 1718, 1649, 1463, 1381, 1273, 1242, 1216, 1135, 1071, 1045, 1018; MS: m/z (%) = 133 (6), 115 (4), 87 (30), 76 (100), 69 (15), 57 (35); HRMS m/z calcd for C₆H₁₃O₃: [MH+] 133.0864; found: 133.0861.

(allo)-2-hydroxy-3-methyl-pentanonic acid (9)

Yield: 82%; white solid; ¹H NMR (400 MHz, DMSO): δ 0.76 (d, ¹J = 6.85, 3H, CH₃), 0.85 (t, ¹J = 7.46, 3H, CH₃), 1.11-1.22 (m, 1H, CH₂), 1.34-1.45 (m, 1H, CH₂), 1.64-1.70 (m, 1H, CH), 3.89 (d, ¹J = 3.63, 1H, CH); ¹³C NMR (100 MHz, DMSO): δ 175.8, 72.1, 37.9, 25.6, 13.8, 11.7; IR (film): 3314, 2966, 2937, 2879, 2625, 1718, 1649, 1463, 1381, 1273, 1242, 1216, 1135, 1071, 1045, 1018; MS: m/z (%) = 133 (22), 115 (10), 105 (32), 97 (12), 87 (100), 76 (44), 69 (54), 57 (38); HRMS m/z calcd for C₆H₁₃O₃: [MH+] 133.0864; found: 133.0863.

(R)-2-hydroxy-pent-4-ynoic acid (12)

Yield: 78%; pale brown solid; 1 H NMR (400 MHz, DMSO): δ 2.40-2.53 (m, 2H, CH₂), 2.78 (m, 1H, CH), 4.05 (dd, 1 J = 6.45, 2 J = 5.37, 1H, CH); 13 C NMR (100 MHz, DMSO): δ 173.9, 80.8, 72.7, 68.7, 24.2; IR (film): 3290, 2926, 2633, 2122, 1726, 1422, 1361, 1329, 1205, 1093, 1027, 960; MS: m/z (%) = 115 (100), 109 (5), 97 (38), 91 (9), 87 (21), 69 (25), 53 (7); HRMS m/z calcd for $C_5H_7O_3$: [MH+] 115.0395; found: 115.0402.

(R)-3-chloro-2-hydroxy-propionic acid (14)

Yield: 75%; yellowish solid; ¹H NMR (400 MHz, DMSO): δ 3.96 (m, 2H, CH₂), 4.88 (dd, ^{1}J = 5.3, ^{2}J = 11.3, 1H, CH); ¹³C NMR (100 MHz, DMSO): δ 172.5, 70.1, 47.2; IR (film): 3181, 2976, 2930, 2607, 1731, 1430, 1369, 1276, 1224, 1184, 1099, 910, 857, 772, 678; MS: m/z (%) = 107 (50), 97 (10), 89 (15), 71 (13), 62 (100), 55 (7); HRMS m/z calcd for C₃H₄O₂Cl: [M-OH] 107.9899; found: 107.9900.

(R)-3-fluoro-2-hydroxy-propionic acid (15)

Yield: 65%; yellowish solid; 1 H NMR (400 MHz, DMSO): δ 4.19 (dd, 1J = 4.30, 2J = 2.96, 1H, CH), 4.27 (dd, 1J = 4.30, 2J = 2.96, 1H, CH), 4.48 (dd, 1J = 5.44, 2J = 3.69, 1H, CH₂), 4.59 (dd, 1J = 4.90, 2J = 3.69, 1H, CH₂); 13 C NMR (100 MHz, DMSO): δ 172.4, 85.9, 84.3, 69.8, 69.6; IR (film): 3378, 3196, 2966, 2925, 2855, 2619, 2564, 1731, 1630, 1561, 1459, 1379, 1237, 1208, 1122, 1063, 999; MS: m/z (%) = 109 (5), 97 (10), 81 (15), 73 (20), 69 (25), 63 (100), 55 (19), 45 (40), 40 (85); HRMS m/z calcd for $C_3H_6FO_3$: [MH+] 109.0301; found: 109.0304.

(R)-3-bromo-2-hydroxy-propionic acid (16)

Yield: 79%; brownish solid; 1 H NMR (400 MHz, DMSO): δ 3.52 (dd, ^{1}J = 10.68, ^{2}J = 4.37, 1H, CH₂), 3.56 (dd, ^{1}J = 10.61, ^{2}J = 4.43, 1H, CH₂), 4.31 (t, ^{1}J = 4.50, 1H, CH); 13 C NMR (100 MHz, DMSO): δ 172.5, 69.7, 36.2; IR (film): 3251, 3041, 2975, 2927, 2856, 2623, 1737, 1417, 1338, 1275, 1172, 1104, 976; MS: m/z (%) = 150 (25), 125 (100), 107 (8), 101 (8), 71 (35), 55 (5); HRMS m/z calcd for $C_8H_3O_2Br$: [M-H₂O] 149.9316; found: 149.9312.

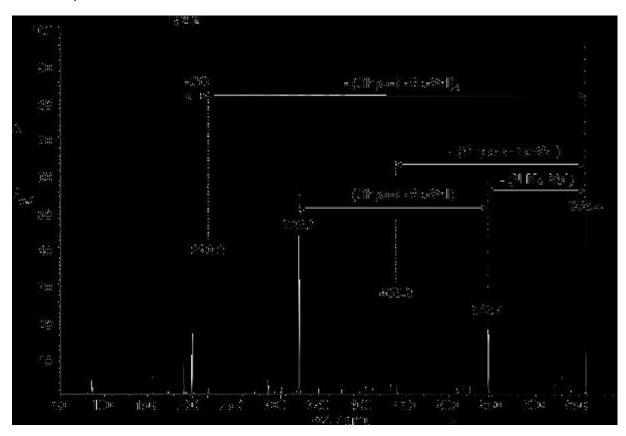
(R)-2-hydroxy-4-methylsulfanyl-butyric acid (17)

Yield: 89%; yellow oil; ¹H NMR (400 MHz, DMSO): δ 1.69-1.78 (m, 1H, CH₂), 1.82-1.91 (m, 1H, CH₂), 2.02 (s, 3H, CH₃), 2.62 (t, ¹J = 6.65, 2H, CH₂), 4.02 (dd, ¹J = 8.53, ²J = 3.96, 1H, CH); ¹³C NMR (100 MHz, DMSO): δ 175.5, 68.4, 33.6, 29.3, 14.6; IR (film): 3324, 2969, 2919, 2848, 2635, 1722, 1429, 1366, 1265, 1221, 1171, 1092; MS: m/z (%) = 150 (75), 132 (10), 120 (20), 105 (15), 89 (11), 75 (50), 61 (100), 57 (20); HRMS m/z calcd for C₅H₁₀O₃S:150.0350; found: 150.0350.

(R)-3-cyclopropyl-2-hydroxy-propionic acid (18)

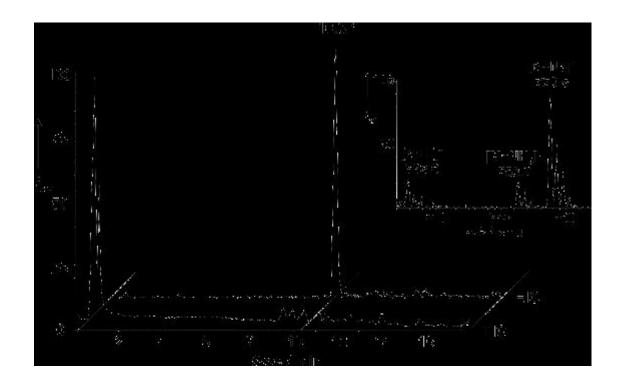
Yield: 81%; white solid; ¹H NMR (400 MHz, DMSO): δ 0.02-0.10 (m, 2H, CH₂), 0.32-0.45 (m, 2H, CH₂), 0.76-0.86 (m, 1H, CH), 1.37-1.44 (m, 1H, CH₂), 1.48-1.55 (m, 1H, CH₂), 3.95 (dd, ^{1}J = 7.46, ^{2}J = 4.77, 1H, CH); 13 C NMR (100 MHz, DMSO): δ 175.8, 70.2, 38.9, 7.3, 4.5, 3.9; IR (film): 3324, 3081, 3004, 2942, 2920, 2637, 2063, 1721, 1649, 1429, 1365, 1233, 1217, 1148, 1085, 1052; MS: m/z (%) = 130 (8), 112 (5), 97 (15), 84 (20), 76 (55), 67 (23), 55 (100); HRMS m/z calcd for C₆H₁₀O₃: 130.0629; found: 130.0621.

Tabel S1. α -D-Hydroxy acids used for in vitro assay.

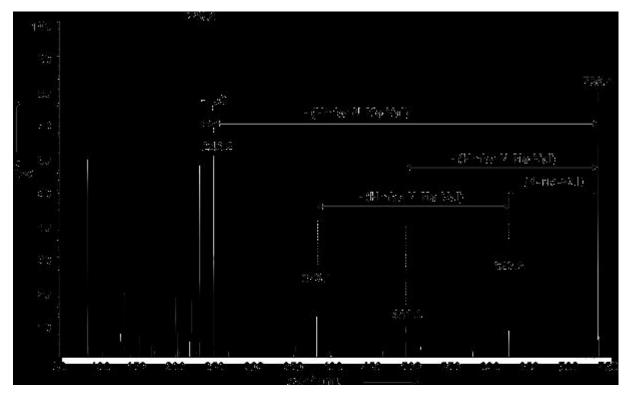

Nr.	α-D-Hydroxy acid	Structure	Incorporated into the cyclodepsipeptide?
1	(R)-2-hydroxy-3-methyl-butyric acid	HO OH	yes
2	(R)-2-hydroxy-propionic acid	но он	yes
3	(R)-2-hydroxy-butyric acid	НО	yes
4	(R)-2-hydroxy-pentanoic acid	HO OH	yes
5	(R)-2-hydroxy-hexanoic acid	но (R) ОН	yes
6	(R)-2-hydroxy-octanoic acid	HO OH	no
7	(R)-2-hydroxy-4-methyl-pentanoic acid	HO OH	yes
8	(R)-2-hydroxy-3-methyl-pentanoic acid	HO OH (R) (R)	yes
9	(allo)-2-hydroxy-3-methyl-pentanoic acid	HO OH	yes
10	(R)-2-hydroxy-3,3-dimethyl-butyric acid	HO OH	no

11	(R)-2-hydroxy-4,4-dimethyl- pentanoic acid	но	no
12	(R)-2-hydroxy-pent-4-ynoic acid	но	yes
13	(R)-2-hydroxy-4-methyl-pent-4- enoic acid	но он	no
14	(R)-3-chloro-2-hydroxy-propionic acid	HO,, OH	yes
15	(R)-3-fluoro-2-hydroxy-propionic acid	HO,,(R) OH	yes
16	(R)-3-bromo-2-hydroxy-propionic acid	HO,,, OH Br	yes
17	(R)-2-hydroxy-4-methylsulfayl- butyric acid	HO OH	yes
18	(R)-3-cyclopropyl-2-hydroxy- propionic acid	но	yes
19	(R)-2,3-dihydroxy-propionic acid	но он	no
20	(R)-2,3-dihydroxy-butyric acid	HO OH OH	no
21	(<i>R</i>)-2-hydroxy-succinic acid	HO OH OH	no

22	(R)-2-hydroxy-3-mercapto-propionic acid	HO,, OH	no
23	(R)-3-cyclohexyl-2-hydroxy- propionic acid	O H	no
24	(R)-cyclohexyl-hydroxy-acetic acid	HO HO	no
25	(R)-hydroxy-phenyl-acetic acid	O H	no
26	(R)-2-hydroxy-3-phenyl-propionic acid	O R	no
27	(R)-2-hydroxy-4-phenyl-butyric acid	E O O O O	no
28	(R)-3-(4-fluoro-phenyl)-2-hydroxy- propionic acid	HO OH	no
29	(R)-2-hydroxy-3-thiophen-2-yl- propionic acid	O HO S	no
30	(R)-2-hydroxy-3-(1H-imidazol-4-yl)- propionic acid	H N NH	no


HPLC-ESI-MS and MSMS spectra:

MSMS-spectrum of 'chloro'-enniatin:



Chpa = (R)-3-chloro-2-hydroxy-propionic acid

HPLC-ESI-MS chromatogram of enniatin-derivative 17:

MSMS-spectrum of enniatin-derivative 17

Hmba = (R)-2-hydroxy-4-methylsulfayl-butyric acid