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The small energy barrier against bond formation in the
first step has to be viewed critically, because in high level
(6-31G* and MP2/6-31G*//3-21G) calculations of model
systems it has been established that this energy barrier
leading to the long bond intermediate vanishes with in-
creasing level of computational rigour.”* However, from
Figure 1, the reaction has to be classified as nonsynchro-
nous-nonconcerted.

Finally, we examined the regioselectivity of the reaction
(Scheme II). As a test system, we chose the reaction of
1 and acetoxy-1,3-cyclohexadienes (2b and 2¢) under the
PET conditions as in Scheme I.

According to the previous results, we only examined the
attack on the 3-position. For the possible regioisomers of
the reaction, the calculations were performed as discussed
before. Starting from the two possible intermediates 9 (A)
and 10 (m) of reaction b, the MERP is shown in Figure 2.

10
AH = 1425 kcaVmaol AHy = 150.9 kcal/mol

Again, the MERP is in excellent agreement with the
experimental results. The calculated AH; for the inter-
mediate 9 leading to the exclusively observed product 8
is 9.3 kecal/mol more favorable than that of the regioisomer
10, hence describing the regioselectivity of the reaction
correctly. Also in the very similar case of the reaction of

AHy = 155.8 kealmol

1 and 2b (reaction a), the intermediate 11 leading to the
ex&tmvdyoburvedprodwﬂulukal/molmonmbh
than its regioisomer 12.

In conclusion, the results of the calculations are in good
agreement with the experimental results and the mecha-
nism we proposed earlier.* Though the approximation of
free, unsolvatized radical cations is made, the regioselec-
tivity and the influences of substituents in the 2- or 3-
position are described properly. On the basis of experi-
mental results and calculations, the reaction is non-
synchronous-nonconcerted, involving a relatively stable
intermediate.
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The 4-anilidopiperidine opioid analogues, exempliﬂod
by fontanyl (1), are widely used in analgetic therapy.?
While 1 is readily prepared, the 4-alkyl analogues, mch
as carfentanil (2), have been more difficult.?
theconvenionofnitrﬂe‘toesmHScbemel)hubeon
plagued by low yields. We report a simple solution to this
problem, the key to which is the direct conversion of an
amide to the corresponding methyl ester.*
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The first step in the synthesis (Scheme I) in Strecker
addition of aniline and HCN to N-benzyl-4-piperidone 3.
While the direct reaction works fairly well, the use of
trimethylsilyl cyanide has been recommended® for this
step. As a less expensive alternative, we have found that
sonication® of the aniline/HCN addition significantly en-
hances the yield.
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Methanolysis of the nitrile would be the most direct way
to convert 4 to 6. We and others® have found, however,
that while some 6 is formed, the dominant products from
such attempts derive from reversal of the Strecker addi-
tion. The alternative has been® hydrolysis to the diffi-
cult-to-handle amino acid, followed by methylation of the
carboxylate salt. The esterification is a competition be-
tween O-methylation and N-methylation, resulting in
mediocre yields.

There are scattered reports* of the direct alcoholysis of
amides to the corresponding methyl esters. After some
experimentation, we found that p-toluenesulfonic acid
monohydrate gave the cleanest conversion of 5 to 6. The
reaction, slow in refluxing methanol, is best run in a sealed
bottle. The optimal temperature for the conversion of §
to 6 is 105 °C, at which temperature the reaction takes 36
h. We expect that less hindered amides will react more
rapidly. (CAUTION: A volatile material, presumably
dimethyl ether,* is formed during the methanolysis. The

reaction should be run behind a shield, and pressure
bottles should be opened slowly, after cooling.)

With these modifications, ester 6, the key intermediate
for the synthesis of carfentanil (2), is available in 1%
overall yield from N-benzyl-4-piperidone (3).

Experimental Section

4-(Phenylamino)-1-(phenylmethyl)-4-piperidinecarbo-
nitrile (4). A mixture of 1-benzyl-4-piperidone (3) (17.01 g, 90
mmol), KCN (14.64 g, 2256 mmol), aniline (12.57 g, 135 mmol),
acetic acid (450 mL), and water (75 mL) was maintained at 46
°C with irradiation from an ultrasonic cleaning bath, for 45 h.
The mixture was cooled and then poured over 200 g of ice in 600
mL of concentrated aqueous NH,OH. An additional 15 mL of
NH,OH was added to complete neutralization (pH = 7 by pH
paper). The mixture was extracted with CHCI, (3 X 150 mL),
and the combined extracts were dried (Na,;SO,), filtered, and
The residue was crystallized from Et,0 to give nitrile
4 as a white solid (23.7 g, 90%), mp = 145-146 °C (lit* mp =
145~1486 °C).
t-(l’wumho)-l (phenylmethyl)-4-piperidinecarbox-
amide (5). Nitrile 4 (15.0 g, 51.5 mmol) was added portionwise
to 400 mL of concentrated H,80, at rt. After 48 h the mixture
was cooled and then added slowly to 400 g of ice in 1300 mL of
concentrated aqueous NH,OH. The resultant white precipitate
was filtered, washed with water, and vacuum dried to give amide
5 (14.35 g, 90%), mp = 180-181 °C. 'H NMR (8): 7.38~7.22 (m,

(G)Agmud experimental procedure was recen blished: Taber,
F.; Hoerrner, R. S.; Hagen, M. D. J. Org. Chm';l.yl';u’l 56, 1287.

5H); 7.18 (t, 2 H, J = 7.7 Hz); 6.87 (be, 1 H); .80 (t, 1 H,J =
7.5 Hz); 6.63 (d, 2 H, J = 7.7 Hz); 5.43 (bs, 1 H); 4.02 (s, 1 H);
348(s,2H); 274 (dt, 2 H,J = 12.1,2.1 Hz); 231 (dt, 2 H,J =
39,126 Hz); 210 (dt, 2 H,J = 2.0,11.9 Hz); 1.92 (bd, 2H,J =
12.2 Hz). *C NMR (3): 178.7, 144.0, 138.5, 129.4, 129.2, 128.4,
127.8, 119.5, 116.4, 63.2, 58.5, 49.0, 31.7; MS (m/z, rel intensity):
309 (17.8), 266 (9.7), 265 (62.5), 264 (100), 2186 (54.8), 172 (28.4).

Methyl 4-(Phenylamino)-1-(phenylmethyl)-4-piperidine-
carboxylate (6). Amide 5 (4.65 g, 15.0 mmol), p-toluenesulfonic
acid monohydrate (10.0 g, 52 mmol), and methanol (55 mL} were
sealed in a glass pressure veasel and maintained at 105 °C (in-
ternal) for 36 h. (CAUTION: PRESSURE BUILD-UP! The
reaction should be run behind a shield.) The vessel was cooled
and vented. The solvent was evaporated, the residue was taken
to pH = 8 (pH paper) with concentrated aqueous NH,OH, and
the mixture was extracted with ethyl acetate (3 X 100 mL). The
combined organic extracts were dried (Na;80,), evaporated, and
chromatographed on silica gel to give 3.63 g (76%) of ester 6, TLC
R, = 0.64 (10% CH;OH/CH,CL), as a clear viscous oil. On
standing in the refrigerator and seeding, this material crystallized,

mp = 80-80.6 °C (lit.¥ mp = 80.5 °C). The **C and 'H NMR
spectra for 6 are identical with those recently 3 with the
;x:ﬁpﬁon that the peak at 3.56 (5, 3 H) cited should be 3.56 (s,
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The Emmons reaction, a popular modification of the
Wittig reaction because of the ease of removal of the
water-soluble byproducts, typically involves the formation
of a diethoxyphosphono intermediate such as 1. This is
converted by a strong base to an anion and treated with
a ketone or aldehyde to provide the desired olefin from
the elimination of a more oxygenated phosphorus species.
We have used such an approach in the synthesis of un-
saturated 1-pyrrolines, 2, identified in the venom of the
ant Megalomyrmex foreli' ‘Thus, the butylpyrroline
phosphonate intermediate 3 was readily prepared by
phosphonylation of the anion of the corresponding 2-
methyl-1-pyrroline under conditions of kinetic control.
The Emmons product of this material and hexanal or
2-hexenal produced the required venom alkaloids, 2.

Several groups preparing phosphono intermediates with
a nitrogen substituent have characterized them with di-
vergent results. Russian and American groups have pre-
pared examples corresponding to 4 and 5, with the pro-
portions of the E and Z isomers varying with various
substituents.? In light of the observations below, it is

(1) Jones, T. H.; DeVries, P. J.; Escoubas, P. J. Chem. Ecol. 1991, 17,
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(2)(;)CMMM& Agular, A. M. J. Org. Chem. 1978, 38, 820. (b)
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