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ABSTRACT 
           

The in vitro addition of plant growth regulators (i.e. phytohormones) to 

Agrobacterium transformed hairy root cultures affects morphological and biochemical 

changes, resulting in altered growth and secondary metabolite accumulation rates in root 

tissues. Significant increases in both growth and secondary product accumulation have been 

observed, upon incubation with phytohormones, in some species. Consequently, the use of 

phytohormones in vitro has received increasing attention as a potential means for increasing 

those plant secondary products notoriously produced in small quantities. However, currently 

little is known about the specific effects of phytohormones on growth and secondary 

metabolism. 

The Chinese herb Artemisia annua L. produces artemisinin, an effective antimalarial 

therapeutic. Efforts to increase the amount of artemisinin via chemical synthesis or field-

grown crops have met with huge costs and disappointingly low yields, respectively.  

Agrobacterium transformed hairy root cultures of A. annua (Clone YUT16) produce 

artemisinin and undergo rapid growth compared to non-transformed, making them a good 

model system to study secondary metabolite production. 

Demonstrated herein is the first definitive evidence, by any hairy root species, of a 

favorable response to exogenous combinatorial hormone application as well as the 

development of a two-stage culture system alluding to optimal growth and artemisinin 

production conditions in A. annua hairy roots.  Furthermore, analysis of artemisinin and 

biomass accumulation in A. annua hairy roots in the presence of phytohormones has revealed 

effective individual as well as combinatorial phytohormone concentrations suitable for 

increasing single and bulk root growth, and artemisinin production. The effectiveness of an 
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optimal phytohormone combination, with respect to time of addition, its relationship to 

inoculum size, and its combination with the provision of fresh nutrients and or mechanical 

stress to the roots is also described resulting in artemisinin yields of up to 0.8 µg/g F.W. 

Although the findings contained herein are not yet optimized they do, however, argue for the 

potential usefulness of a two-stage production scheme using phytohormones to increase plant 

secondary metabolite production in vitro.     
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CHAPTER 1 
 
 
1.0. Background and General Overview 
 
1.1.1. Terpenoids: Valuable Secondary Metabolites   

Secondary metabolites are those compounds that are produced exclusive of the 

primary (nutrition and maintenance) metabolites essential to sustain the life of an organism.  

These secondary products have been shown to be very useful for both the plants as well as 

the animals that synthesize them (Facchini, 1999).  The most abundant and structurally 

dissimilar group of secondary metabolites is the terpenoid family (or isoprenoids). 

Terpenoids are a class of secondary metabolites, derived from isopentenyl diphosphate (IPP), 

with nearly 22,000 members exhibiting more than 300 ring systems (van der Hoevena et al. 

2000).  Terpenoids, including the retinoids, the geranylgeranyl and farnesyl protein anchors, 

vitamins A, D, and E, coenzyme Q, cholesterol, and the steroid hormones have been known 

to play decisive roles in organisms.  Plants direct growth and development via regulatory 

terpenes that include the gibberellins, the brassinosteroids, and abscisic acid.  Some of these 

compounds are medicinally important, for instance, ginkgolide, which has been shown to 

delay the inception and progression of Alzheimer’s disease (van der Hoevena et al. 2000) as 

well as taxol, used as an anticancer agent (van der Hoevena et al. 2000).  Production of 

certain protective terpenoids, by various plant species, has also been shown to impair the 

biological processes in herbivores. Numerous plant terpenoids have been found to perform 

secondary functions, primarily in defense against insect herbivores (van der Hoevena et al. 

2000).  Certainly terpenoid-based resins, produced by conifers, have long been studied for 

their industrial importance and role in defense against herbivores and pathogens (Bohlmann 
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and Croteau, 1999; Bohlmann et al. 2000; Phillips and Croteau, 1999; Trapp and Croteau, 

2001). 

 

1.1.2. Pathways Governing Terpenoid Biosynthesis 

Since the 1950's, it was known that the central components for terpenoid 

biosynthesis, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), are 

synthesized from activated acetic acid via the mevalonic acid pathway (Eisenreich et al. 

1998).  Today there is a wealth of 

evidence that shows that an additional 

pathway exists for the formation of IPP 

and subsequent terpenoid synthesis in 

higher plants. The mevalonate pathway is 

located in the cytosol/ endoplasmic 

reticulum, and the 2-C-methyl-erythritol-

4-phosphate pathway (mevalonic acid-

autonomous or MEP), which proceeds via                          Figure 1.1.    Scheme of the pathways of terpenoid 
biosynthesis taken from Martin et al. (2002). 

 1-deoxyxylulose-5-phosphate, is localized in plastids (Eisenreich et al. 1998; Lichtenthaler, 

1999; Figure 1.1).  In our laboratory, Souret (2002) provided the first evidence of these dual 

pathways in Agrobacterium transformed hairy roots of Artemisia annua.   By RNA gel blot 

analysis, he showed constitutive expression of key regulatory enzymes in the MEP pathway 

(Souret, 2002; Souret et al. 2002).  In general, however, regulation of terpenoid synthesis is 

very poorly understood (Crouteau et al. 2000).  

 

 2



1.1.3. Artemisinin: An Effective Antimalarial Sesquiterpene 

Structurally, sesquiterpenes can be 

acyclic (farnesol), monocyclic (abscisic acid), or 

polycyclic (artemisinin).  Many also exhibit 

biological activity, for example, the plant growth 

regulator abscisic acid (ABA) (Threlfall and 

Whitehead, 1991).  Our laboratory focuses on 

terpenoid biosynthesis, specifically the 

production of the sesquiterpene lactone, 

artemisinin, that has potent biological activity (Figure 1.2).  It and its derivatives are effective 

anti-malarial therapeutics, produced by the annual herb, Artemisia annua L., (Asteraceae), 

native to Asia, (Dhingra et al, 2000), and known in the United States as Sweet Annie, or 

annual wormwood. Artemisinin was isolated and correctly defined in 1972 in China as a 

sesquiterpene lactone with an endoperoxide bridge. This peroxide moiety is responsible for 

its anti-parasitic activity in the treatment of malaria (Dhingra et al, 2000; Duke et al. 1987; 

Chen et al. 1991). Artemisinin is now commercially available as a therapeutic against drug-

resistant strains of Plasmodium, the malarial parasite (Duke et al. 1987; Chen et al. 1991).   

Unfortunately artemisinin production by the A. annua plant is usually in the range of 0.01% 

to 0.4%, but some clones can produce over 1% of the plant’s dry weight (Delabays et al. 

1993; Delabays et al. 2001). Acton et al. (1985), reported that artemisinin can also be 

obtained from artemisinic acid, which can be found at concentrations as much as 10-fold 

higher than artemisinin in hairy root tissues (Weathers unpublished results), and the native 

plant (Ferreira et al. 1997). 

z 

Figure 1.2. Structure of artemisinin.
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1.1.4. Artemisinin Optimization  

 In Artemisia annua, the maximum artemisinin accumulation, from field grown crops, 

takes place at or near the onset of flowering in most strains, hence only one crop can be 

harvested annually (Woerdenbag et al. 1994; Morales et al. 1993; Ferreira et al. 1995; 

Laughlin 1995). Also, the highest concentrations obtained at harvest are 0.8% and have been 

reported to be as low as 0.001% of the plant’s dry weight (Martinez and Staba, 1988).  This 

is equivalent to 8 mg/g and 0.01mg/g dry weight, respectively (Basile et al. 1993).  Klayman 

(1985) reported that in clinical trials, one course of treatment requires 2-3 grams of the drug 

and that repeated recrudescence may call for multiple courses of treatment per year. Since 

malaria threatens roughly 40 % of the world’s population causing death, morbidity, and 

significant socio-economic loss, a considerable amount of artemisinin is required (Dhingra et 

al, 2000). The limited availability from large-scale cropping of A. annua plants coupled with 

high demand for the therapeutic has spurred scientists to explore alternate methods of 

production.  Chemical synthesis of artemisinin has been attempted. However, due to the 

presence of the endoperoxide moiety in the structure of artemisinin, present methods for 

chemical synthesis are expensive and have met with limited success (Dhingra et al, 2000).   

An alternative to field-grown crops or to chemical synthesis has been large scale in 

vitro plant tissue culture (Francois et al. 1990; Dhingra et al, 2000).  In vitro cultures may 

potentially constitute useful and easily manipulated systems for producing valuable 

biologically active compound in plants that do not require labor-intensive methods (McCabe 

et al. 1997).  However, in vitro production systems are still not cost effective and produce 

low yields (McCabe et al. 1997).  
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1.1.5. In Vitro Methods for Overproduction of Secondary Metabolites 

1.1.5.1. Undifferentiated vs. Differentiated Culture 

 Alternative methods such as cell suspension cultures have been sought to deal with 

problems of low concentrations in whole plants of secondary metabolites, like artemisinin 

(Basile et al. 1993) and paclitaxel (Christen et al. 1991; Gibson et al. 1995; Luo et al, 2001).    

While suspension cultures can be transformed with novel genes and are relatively easy to 

scale-up, they are not very genetically stable (Bais et al, 2001;Gibson et al. 1995; Rhodes et 

al. 1994). Disappointing yields coupled with instability have required new methods for 

improving production of secondary products. 

Toward this end, genetic manipulation of dicotyledonous whole plants using modified 

Ri or Ti DNA segments from agropine- and mannopine-type strains of Agrobacterium, has 

resulted in neoplastic roots that have augmented growth and secondary metabolite production 

rates (Bais et al. 2001; Giri and Narasu, 2000). Secondary product levels in in vitro 

differentiated tissues, are frequently either comparable or greater than those found in either 

roots or shoots of the intact plant (Giri and Narasu, 2000; Dhingra et al, 2000; Bais et al. 

2001; Bourgard et al. 2001). These compounds are also produced concomitantly with growth 

(Bourgard et al. 2001). Therefore, continuous extraction of secondary metabolites from 

actively growing hairy roots is possible.  Moreover, the transformants are genetically stable 

over a long period of time with consistent biosynthetic capabilities.  Also, hairy roots do not 

require the application of growth regulators.  (Yu and Doran, 1994; Bias et al. 2001). In 

1994, Weathers et al. reported high levels (0.4% of the dry weight) of artemisinin in hairy 

root cultures of A. annua.  
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 While one cannot preclude the value of suspension cultures, their inherent genetic 

instability dilutes their potential as feasible secondary metabolite production systems.  

Conversely, the long term genetic stability, and consistent biosynthetic capabilities of 

transformed hairy roots predisposes these differentiated cultures as a better means for 

secondary metabolite production in vitro.   

 
 
1.1.5.2. Abiotic Factors Affecting Secondary Metabolite Production in                                     

Hairy Roots      
 
 Many factors including light, medium composition, pH and most notably, the 

exogenous application of plant growth regulators affect secondary metabolism in in vitro 

hairy root cultures.  The relative impact of these influences is usually species dependent 

(Bourgaud et al. 2001).  

 Researchers studying alkaloid production in transformed hairy root cultures noted that 

optimization of the medium, specifically mineral composition and sucrose concentration can 

play either a neutral or positive role in growth of the roots as well as secondary metabolite 

production (Hilton and Rhodes 1993; Rhodes et al. 1994; Bourgard et al. 2001). The external 

pH of the medium changes over the course of batch growth, and has also been shown to 

influence the release of secondary products from root cultures (Sáenz-Carbonell et al, 1993; 

Morgan et al. 2000). 

 Of interest to this study is the relationship between exogenously applied 

phytohormones and hairy root cultures, specifically their effects on root development and 

secondary metabolism. Endogenously produced in a variety of plant tissues, plant hormones 

are present in trace amounts and are responsible for an array of developmental processes that 

involve abiotic as well as biotic factors (Crozier et al. 2000).  Since the discovery of these 
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signaling compounds in the mid 1920’s, a considerable amount of research has been 

performed examining the influences of both endogenous and exogenous concentrations of 

phytohormones on plant cell physiology.  Currently, we know that these growth regulators 

direct culture growth, influence cell secondary metabolite accumulation, and promote 

morphological diversity in a concentration dependent manner (Crozier et al. 2000).  There 

are five main phytohormones: gibberellins, auxins, cytokinins, ethylene, and abscisic acid.  

Following is a short review of the 5 main plant hormones, along with a summary of their 

main and observed affects on hairy roots.  

 

1.1.6. Phytohormone Regulation of Growth and Secondary Metabolites 
 

1.1.6.1. Gibberellic Acid (GA) 

 
 Gibberellic acids (GA) are widespread and 

so far ubiquitous in angiosperms and gymnosperms 

as well as pteridophytes (Crozier et al. 2000; Figure 

1.3). They have also been isolated from lower plant 

species such as mosses and algae, at least two fungal 

species, and from two bacterial species (Crozier et 

Gi

da

pr

kn

 

 

Figure 1.3. Structure of Gibberellic
acid from Crozier et al. (2000).  
al, 2000). Since their discovery in the ascomycete, 

bberlla fujikuroi in 1926, a phenomenal number of GAs (125) have been characterized to 

te, all of which are most likely not essential to the plant (Crozier et al, 2000). GAs are 

oducts of the terpenoid pathway (Crozier et al, 2000).  Following are some of the responses 

own for gibberellins: 
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• Stimulate stem elongation by stimulating cell division and elongation.  
 

• Stimulate bolting/flowering in reaction to long days.  
 

• Break seed dormancy in some plants, which require stratification or light to induce 
germination.  

 
• Induce male character in dioecious flowers (sex expression).  

 
• Stimulate enzyme production (α-amylase) in germinating cereal grains for 

recruitment of seed reserves.  
 

• Can initiate seedless fruit development.  
 

• Can delay senescence in leaves and citrus fruits. 
 
 
1.1.6.1.2. GA Affects on Hairy Root and Secondary Metabolism 

Fundamental to hairy root culture systems, is their ability to grow without the 

addition of plant growth regulators.  Interestingly, the addition of an individual growth 

regulator, like gibberellic acid, has yielded definitive evidence that GA can play an important 

physiological role in root morphology and secondary product accumulation.    

In studies of the effects of GA on hairy root morphology, Bais et al. (2001) reported 

that low concentrations (0.5 mg/l) of GA increased the biomass accumulation in the hairy 

roots of Cichorum intybus, due to high levels of root elongation, lateral root branching, and 

primary root growth almost 2-fold over the hormone-free controls. Vanhala et al. (1998) 

observed, in the presence of GA no loss of Hyocyamus muticus root integrity but that the 

hairy root cultures seemed to age rapidly compared to roots not supplied with GA.  

Surprisingly, this premature aging phenomenon did not decrease biomass accumulation.  

Ohkawa and coworkers (1989) observed that GA stimulated elongation and lateral branching 

of the hairy roots of Datura innoxia.   Their roots were transformed with TL-DNA (the 

portion of Ti DNA lacking the IAA synthesizing genes) and displayed rapid growth and 
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copious amounts of lateral roots in the presence of GA at concentrations between 0.01-1.0 

mg per liter. It was concluded that GA, rather than auxin, was responsible for controlling root 

morphology in D. innoxia.  Also, exogenously supplied GA3 enhanced branching in 

Brugmansia candida roots (Rhodes et al. 1994).  A pronounced influence on growth was 

observed by Liu et al. (1997) in the hairy roots of A. annua in the presence of GA at a 

concentration of 5 mg/l.  Of all the hormones studied in that report, GA was the only one to 

yield high levels of biomass.  This may be a reflection of the increase in root elongation and 

lateral branching as seen in other studies involving hairy root cultures. For example, in our 

laboratory Smith et al. (1997) observed that GA3 concentrations of 1-10 ng per liter provided 

the most significant increase in biomass during exponential growth in A. annua hairy roots. 

In terms of secondary metabolite production, variable results have been obtained 

using GA, and are usually species specific. For example, Vanhala et al. (1998) observed that 

in H. muticus hairy roots, GA decreased the accumulation of the secondary metabolite 

hyoscyamine, compared to roots cultivated in hormone-free medium. Conversely, Liu et al 

(1997) and Bais et al (2001) observed that the addition of GA to the growth medium 

increased artemisinin and coumarin content in the hairy roots of A. annua and C. intybus L. 

CV. Lucknow local, respectively.  Since GA is known to induce flowering in some plants 

(Crozier et al. 2000), and maximum artemisinin accumulation in field-grown crops occurs at 

or near the onset of flowering in most strains (Woerdenbag et al. 1994; Morales et al. 1993; 

Ferreira et al. 1995; Laughlin 1995), this may explain the increase in artemisinin. In the case 

of coumarin production, Bais et al. (2001) observed that coumarin accumulation was strictly 

related to growth, suggesting that GA plays a key role in the production to coumarin.  From 
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our laboratory, Smith et al. (1997) reported that GA3 concentration of 10 ng per liter 

produced the highest levels of artemisinin in hairy roots of A. annua.  

 

1.1.6.2. Auxins 

 Another growth-promoting factor, auxin (

1.4), was discovered in 1926, by Frits Went (Crozier,

al. 2000).   Indole-3-acetic acid (IAA) represents th

primary auxin produced in plants.  Auxin is a diffusible 

compound that is chemically similar to the amino acid

tryptophan, from which auxins are thought to be 

synthesized (Crozier et al. 2000). Following are some of the responses known for auxins: 

• Stim

Figure 

 et 

e 

 

ulate root initiation on stem cuttings and lateral root development in tissue 
culture.  

 
• he tropistic response of bending in response to gravity and light.  

ia ethylene stimulation) leaf and fruit abscission.  

an effect on phloem transport.  

er parts.  

Figure 1.4. Structure of auxin, taken 
from Crozier et al. (2000).  

Mediate t
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• Stimulate the production of ethylene at high concentrations. 

 
.1.6.2.1. Auxin Affects on Hairy Root Secondary Metabolism 
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 of auxin concentration relative to root 
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1

The mannopine or agropine-type strains of A. rhizogenes used to tra

 impart auxin-sensitive characteristics to the resulting transformants.  Physiologica

this character is manifested either via a heightened sensitivity to auxin, or by a 

hypersensitivity to auxin along with elevated levels of IAA inside the tissues, re

(Giri and Narasu, 2000; Arroo et al. 1995).  Hairy root auxin sensitivity has received great 

attention.  Moreover, studies on the biochemical relationship between exogenous and 

endogenous auxin levels using these differentiated tissues have returned interesting fin

in the area of valuable root-derived biologically active compounds.  By and large, researchers

investigating the physiological role of exogenously applied auxin in root growth and 

secondary metabolite production have established that these signal molecules can grea

impact plant tissue stability and secondary product accumulation either individually  or 

through phytohormone-phytohormone interactions.  

Of particular interest to this study is the effect

s. For example, Sauerwein et al. (1992) reported on the exogenous phytohormone-

phytohormone relationship displayed in cultures of Hyocyamus albus and described the 

formation of pure calli in the presence of both exogenous auxin and cytokinin. They 

observed that the single addition of only IAA to the medium resulted in partial 

disorganization of the hairy root morphology. However, growth rates increased,

upon the transformation strain used, when there were low levels of auxin and cytokinin 

(1:1mg/l ratio).   Rhodes et al. (1994) also observed disorganization of the hairy root ma

of Nicotiana rustica when cultures were supplied with auxins and cytokinins.  However, 
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these effects were minimized by increasing the root inoculum size. Bais et al. (2001) also

showed that when high levels of exogenously applied auxins, specifically IAA and NAA, 

were added in the presence of low exogenous cytokinin levels, there was a decrease in 

biomass in the hairy root cultures of C. intybus, unless the root inoculum size was incre

Although others have shown that auxin addition to a variety of hairy root cultures stimulates 

growth, the response is likely species specific (Arroo et al. 1995; Sudha et al. 2003; 

Luczkiewicz et al. 2002). For example, Lin et al. (2003) demonstrated that auxin had

influence on hairy root cultures of Linum flavum. Taken together,  these studies on the effec

of auxins on hairy root growth show that, although there is some species variability, the ratio 

of the exogenously added hormone to root biomass is critical to achieving good root growth.  

In terms of auxin effects on secondary metabolite production, Bais et al. (2001) noted 

 

ased.  

 little 

t 

that hig

Lin 

at 

odes 

 

. 

h levels of exogenous auxins, specifically IAA and NAA in the presence of low 

cytokinin levels, decrease the ability of root cultures of C. intybus to produce coumarin. 

et al.(2003) showed that coniferin content in L. flavum was significantly increased in the 

presence of auxin.  However, in Tagetes patula hairy roots, Arroo et al. (1995) showed th

the addition of IAA inhibited secondary metabolite accumulation. In contrast, addition of 

either IBA or NAA stimulated ajmalicine and ajmaline production over the Rauwolfia 

micrantha hairy root cultures in hormone-free medium (Sudha et al. 2003), whereas Rh

et al. (1994) observed a decrease in nicotine content in the hairy roots of Nicotiana rustica 

when roots were supplied with auxins plus cytokinins. Luczkiewicz et al. (2002) discovered

that the production of the sesquiterpene lactone pulchelin E was enhanced in hairy roots of 

Rudbeckia hirta compared to that of callus and suspensions cultures in the presence of auxin

In our lab Bunk (1997) suggested that in the presence of high levels of auxin (IAA or NAA), 
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artemisinic compound yield was increased in A. annua hairy roots. Again, these reports show 

species specificity in auxin’s effect on secondary production in hairy roots. 

 

    Figure 1.5. Structure of 
cytokinin, taken from Crozier et 

.1.6.3. Cytokinins 

          The most common form of naturally occurring 

igure 
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 (shoot initiation/bud formation) in tissue culture.  

asts via stimulation of chlorophyll 
synthesis.  

 

1

al. (2000).  

concentrations are highest i

cytokinin in plants today is called zeatin. Cytokinins (F

1.5) have been found in almost all higher plants as well as 

mosses, fungi, bacteria, and is also associated with the tRN

of many prokaryotes and eukaryotes (Crozier et al. 2000). 

Currently there are more than 200 natural and synthetic 

cytokinins combined (Crozier et al. 2000). Cytokinin 

eristematic regions and areas of continuous growth pote

such as roots, young leaves, developing fruits, and seeds (Crozier et al. 2000).  They are 

mainly synthesized in the roots and translocated via the xylem to shoots. Cytokinin 

biosynthesis occurs via the biochemical modification of adenine (Crozier et al. 2000

Following are some of the responses known for cytokinins (Crozier et al. 2000): 

• Stimulate cell division.  

• Stimulate morphogenesis
 

• Stimulate the growth of lateral buds-release of apical dominance.  
 

• Stimulate leaf expansion resulting from cell enlargement.  
 

• May enhance stomatal opening in some species.  
 

• Promote the conversion of etioplasts into chloropl
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1.1.6.3.1. Cytokinin Affects on Hairy Root Secondary Metabolism 

Cytokinins have been shown to direct shoot growth in tissue culture (Crozier et al. 

2000).  The intrinsic ability of cytokinins to alter tissue morphogenesis favoring the 

production of shoots may be the reason it has routinely received such little attention in hairy 

root cultures.  In any case, exogenous cytokinins impact growth and secondary metabolite 

accumulation in a phytohormone-to-phytohormone ratio-dependent manner that can be toxic 

and even lethal.  Likewise, they can induce spontaneous shoot formation in hairy root 

cultures when administered individually at high concentrations.  Indeed, low cytokinin to 

auxin levels have been shown to induce rapid disorganization in hairy root cultures of C. 

intybus as well as decrease root growth and the ability of root cultures of C. intybu L. cv. 

lucknow local (Bias et al, 2001), and B. candida (Rhodes et al. 1994) to produce secondary 

products.  Vanhala et al. (1998) similarly demonstrated that the root growth rate and 

secondary product accumulation did not change despite addition of exogenous cytokinins to 

H. muticus cultures.  In contrast, Sauerwein et al. (1992) observed that when the ratio of 

exogenous cytokinin to exogenous auxin was 1:1, both growth and alkaloid accumulation 

were enhanced in hairy root cultures of H. albus.    

In A. annua, addition of cytokinin (BAP) to the medium of hairy roots resulted in the 

disorganization of the root matrix with little effect on production of artemisinic compounds 

(Bunk, 1997).   
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1.1.6.4. Ethylene 

H2C=CH2 is the structure of ethylene. Unlike the other plant hormones, ethylene is a 

gaseous hormone, and the only member of its class. Of all the known plant growth 

substances, ethylene has the simplest structure. It is produced in all higher plants and is 

usually associated with fruit ripening (Crozier et al. 2000). Ethylene is produced from 

methionine in essentially all tissues, but its production varies with the type of tissue, the plant 

species, and also the stage of development (Crozier et al. 2000). Following are some of the 

responses known for ethylene (Crozier et al. 2000):  

 

• Stimulates the release of dormancy.  
 

• Stimulates shoot and root growth and differentiation (triple response).  
 

• May have a role in adventitious root formation.  
 

• Stimulates leaf and fruit abscission.  
 

• Stimulates Bromeliad flower induction.  
 

• Induction of femaleness in dioecious flowers.  
 

• Stimulates flower opening.  
 

• Stimulates flower and leaf senescence.  
 

• Stimulates fruit ripening. 
 
 
1.1.6.4.1. Ethylene Affects on Hairy Roots Secondary Metabolism 

Literature reporting on the affects of exogenous ethylene on hairy root cultures is 

virtually non-existent.  Perhaps this is due to the fact that ethylene alters the in vitro behavior 

of the plant tissues and promotes senescence (Kumar et al. 1996). Ethylene can promote or 

inhibit, in a species dependent fashion, the production of secondary products (Kumar et al. 
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1996).  Shibli et al. (1999) reported that increasing ethylene content in the medium caused a 

reduction in pigment production and callus growth in Vaccinium pahalae.  Fulzele et al. 

(1995) concluded that exogenous addition of ethylene to the culture medium stimulated 

terpenoid synthesis in A. annua L. plantlet cultures grown in a bioreactor. In our lab Bunk 

(1997) observed clone specific results in A. annua hairy roots supplied with ethylene (as 

ethephon). Whereas clone YUT-16 grew at or significantly above what was seen in control 

roots, A. annua clone YUM-290 grew unaffected in the presence of ethylene.   In terms of 

secondary metabolites production, Bunk’s data suggested that high concentrations of 

ethephon promoted high levels of artemisinin production (Bunk, 1997). When A. annua 

clone YUT-16 was provided with 5.0 or 15.0 mg/l ethylene (as ethephon), roots often grew 

poorly usually developing dense callused tissue or suspension cells.     

 

1.1.6.5. Abscisic acid 

Figure 1.6.. Structure of abscisic acid, 
(taken from Srivastava,(2002).  

 Like ethylene, abscisic acid is a hormone that 

occurs as only one chemical structure (Figure 1.6). ABA 

is a naturally occurring compound in plants. It is a 

sesquiterpenoid (15-carbon) that is thought to be 

produced in the mevalonic acid pathway and from the 

cleavage of C40 precursors (Crozier et al. 2000). In whole 

plants biosynthesis primarily occurs in the leaves. The 

production of ABA is accentuated by stresses such as water loss and freezing temperatures. It 

is believed that biosynthesis occurs indirectly through the production of carotenoids. 

Following are some of the responses known for abscisic acid (Crozier et al. 2000). 
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• Stimulates the closure of stomata (water stress brings about an increase in ABA 
synthesis).  

 
• Induces gene transcription especially for proteinase inhibitors in response to 

wounding which may explain an apparent role in pathogen defense.  
 

• Inhibits shoot growth but will not have as much affect on roots or may even promote 
growth of roots.  

 
• Has some effect on induction and maintenance of dormancy.  

 
• Induces seeds to synthesize storage proteins.  

 
• Inhibits the affect of gibberellins on stimulating de novo synthesis of α-amylase.  

 
 

1.1.6.5.1. Abscisic acid Affects on Hairy Roots Secondary Metabolism 

 To my knowledge, little is known about the affects of exogenous ABA on hairy root 

culture.  There are some reports, however, showing that ABA can inhibit secondary product 

accumulation but not hairy root morphology.  In contrast, exogenous application of ABA to 

cell suspension cultures appears to stimulate secondary product accumulation, while 

inhibiting biomass yield in a time dependent manner. For example, the addition of 5 mg of 

abscisic acid per liter after 12 days growth of T. chinensus suspension cultures boosts 

paclitaxel accumulation roughly 5 times that of the controls (Luo et al. 2001).  They also 

observed decreases in biomass in all cultures where ABA was added on day 0.  Conversely, 

cultures where ABA was added at day 12 displayed minimal affects on biomass.  On the 

other hand,Vanhala et al. (1998) demonstrated that exogenous application of ABA strongly 

inhibited hyocyamine accumulation in hairy root cultures of H. muticus.  They did not 

observe any adverse effect on root biomass.  Preliminary studies by Bunk (1997) in our lab 

showed that increasing concentrations of ABA in culture medium stimulated growth by as 
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much as 700% in A. annua hairy roots.  Artemisinin levels were also elevated in the presence 

of 5.0 mg/l ABA (Bunk, 1997).      

  
 
1.1.7. Combinatorial Phytohormone Treatment 

 

The influences of these growth regulatory compound are numerous and far reaching. 

Studied individually, these hormones have increased our understanding of factors that affect 

growth and secondary metabolism of in vitro plant cultures.  The information gained from 

the experiments above will inevitably guide the field of metabolic engineering in the future.  

However, one immediate objective, thus far overlooked by others, is the employ of hormone 

combinations in order to increase biomass and secondary metabolite production in hairy root 

cultures.  Auxin:cytokinin combinations have met with success in a limited number of plant 

species.  To my knowledge, however, no evidence of a multi-factorial study investigating the 

effects of phytohormones on secondary metabolism has been published. Since hormones 

regulate a multiplicity of plant functions, it is reasonable to assume that combination of 

hormones at different concentrations may also affect terpenoid biosynthesis.     

In fact, a preliminary factorial study in our laboratory performed by Tara Smith 

(unpublished data, Table 1.1) showed the effectiveness of 27 phytohormone combinations on 

artemisinin and root growth in Agrobacterium transformed hairy root cultures of A. annua 

clone YUT-16.  Each combination contained GA3, ethephon, ABA and NAA component at 3 

different concentrations, and was applied to hairy roots grown in modified B5 medium that   
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Table 1.1. Growth and artemisinin production in hairy roots of Artemisia annua in the 
presence of a 4-hormone combination in medium B-15 (Tara Smith, unpublished data). 

 
 

 

Experiment 
number 

GA3 
(mg/L) 

Ethephon 
(mg/l) 

ABA 
(mg/l)

NAA 
(mg/l) Fresh Wt (g) 

Artemisinin 
(µg/g FW) 

1 0.005 5 0.1 5 2.27+ 0.42 3.9 + 0.1 

2 0.005 5 5 0.01 0.38 + 0.05 0 

3 0.005 5 10 1 0.35 + 0.08 0 

4 0.005 5 0.1 1 0.85 + 0.15 0 

5 0.005 10 5 5 0.29 + 0.01 0 

6 0.005 10 10 0.01 0.13 + 0.01 0 

7 0.005 15 0.1 0.01 0.2 + 0.03 0 

8 0.005 15 5 1 0.13 + 0.02 0 

9 0.005 15 10 5 0.14 + 0.02 0 

10 0.01 5 0.1 1 1.09 + 0.18 3.9 + 0.1 

11 0.01 5 5 5 0.43 + 0.1 0 

12 0.01 5 10 0.01 0.25 + 0.04 0 

13 0.01 10 0.1 0.01 0.41 + 0.04 0 

14 0.01 10 5 1 0.33 + 0.01 0 

15 0.01 10 10 .5 0.25 + 0.01 0 

16 0.01 15 0.1 5 0.46 + 0.03 9.5 + 1.9 

17 0.01 15 5 0.01 0.15 + 0.02 0 

18 0.01 15 10 1 0.13 + 0.01 0 

19 0.02 5 0.1 0.01 1.31 + 0.18 4.2 + 0.5 

20 0.02 5 5 1 0.49 + 0.17 9.45 + 2.1 

21 0.02 5 10 5 0.47 + 0.15 10.2 + 2.1 

22 0.02 10 0.1 0.5 1.27 + 0.07 4.2 + 0.6 

23 0.02 10 5 0.01 0.18 + 0.03 0 

24 0.02 10 10 1 0.21 + 0.02 0 

25 0.02 15 0.1 1 0.42 + 0.06 5.9 + 5.1 

26 0.02 15 5 5 0.25 + 0.05 0 

27 0.02 15 10 0.01 0.11 + 0.02 0 

 
Note:  All experiments run in autoclaved medium B15 (Appendix A1).   
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were previously optimized for growth ( Weathers et al., 1996; Weathers et al., 1997).  That 

optimized medium is defined as B15.  Interestingly, three of the twenty-seven experiments 

run yielded the highest levels of artemisinin in her study.  Unfortunately, this increase in 

artemisinin was also accompanied by low root biomass accumulation (Table 1.1).  These data 

suggest that use of phytohormone combinations may be a potential means of increasing 

secondary product accumulation.  It should be noted that these preliminary experiments were 

run without hormone-free controls, and in autoclaved medium.  Hence, it is not known 

whether this system stimulated production of artemisinin above B15 or B5 controls.  The 

process of autoclaving also variably hydrolyzes sugars, and removes essential ammonia from 

the medium  (De Jesus and Weathers, unpublished).   

 

1.1.8. Multi-stage Culture Process 

It was observed some time ago that many secondary metabolites are often produced 

after most growth has ceased, or at least not during exponential phase (Bourgaud et al. 2001).  

Indeed the first commercially produced plant product, shikonin, is produced during a second 

stage, in a new medium, and after growth has mainly ceased (Yazaki et al., 1999).  This 

process is known as a two-stage culture and in some cases, growth and secondary metabolite 

production has been as high as five times that of a one-staged culture that used only an 

original medium formulation (Toivonen et al. 1991; Jung et al. 1994; Luo et al. 2001). 

In our laboratory, orthogonal multi-factorial design experiments incorporating 

inorganic salts and sugar, along with inoculum age were performed to obtain an optimum 

growth medium for A. annua hairy roots (Weathers et al. 1997).  Unfortunately, the same 

conditions were not optimal for artemisinin production (Weathers et al. 1997).  We now 
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know that time of addition of nutrients, hormones, or elicitors, also plays a key role in 

secondary metabolism.  For example, Luo et al. (2001) observed in T. chinensus a dramatic 

decrease in root biomass occurred when phytohormones were added at day 0 as opposed to 

addition at day 12.   Used together a two-staged addition of plant hormones should begin to 

allow for the optimization of high growth and secondary metabolite production conditions. 

 

1.1.9 Summary  

 Plant derived therapeutics represent one quarter of a multi-billion dollar global 

pharmaceutical industry (GEN, 1998).  Terpenoids, which are the largest group of these 

products, have been extensively used but with little understanding of terpenoid biosynthesis 

(van der Hoevena et al. 2000; Chappell, 1995). A considerable amount of work remains to be 

done in order to determine what controls terpenoid biosynthesis.    

  Recent novel genetic work involving the introduction of key regulatory enzymes in 

the two pathways, as well as cDNA library screening studies has greatly improved a 

fundamental understanding of terpenoid biosynthesis (Croteau et al. 2000; Eisenreich et al, 

1998; Souret, 2002).  However, these techniques are costly and time-consuming and often 

result in only slight improvement, if any, of secondary metabolite yields.  In vivo 

optimization strategies using field-grown crops harvested annually, invariably return poor 

yields with respect to amount produced of a plant-derived drug per plant hectare to the 

amount needed by an afflicted person (Dhingra et al. 2000).  Researchers using in vitro 

cultures, dealing with transformed hairy roots and suspension cells, have recorded significant 

increases in the production of secondary compounds as well as in growth of whole culture or 

specific aspects of the cultures (Dhingra et al. 2000). In our laboratory, the use of medium 
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optimization, light, and phytohormones, such as GA, ABA, IAA, NAA, ethylene, and 

cytokinin have also shown some promising results.  

 Of the techniques mentioned above, the use of hairy root cultures, medium 

optimization, and the addition of phytohormones are germane to the following research.  Our 

laboratory uses the hairy root clone YUT-16 that was selected for its fast growth rate and 

artemisinin production levels (Weathers et al. 1994).  The following research report is based 

on the use of an optimized growth medium (B15; Weathers et al. 1997), coupled with a four 

factor fractional factorial design set of experiments (T. Smith, unpublished, Table 1), to 

investigate optimization of growth and artemisinin production in transformed roots of A. 

annua.    
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CHAPTER 2 
 
 
RESEARCH OBJECTIVES 
  

It was expected that an effective culture process can be designed for Agrobacterium 

transformed hairy roots of A. annua, whereby artemisinin production can be optimized, using 

a two-stage process approach and phytohormone addition.  Hence, the goal of my research 

was to investigate and compare the effects of exogenously applied phytohormones on growth 

and secondary metabolite production in hairy roots of A. annua using a two-stage culture 

system.  Specifically my aims were to: 

• Measure the individual effects of exogenously applied auxins, cytokinins, abscisic 
acid, gibberellic acid, and ethephon on single root tip and bulk A. annua root growth.   

 
• Measure the individual effects of exogenously applied auxins, cytokinins, abscisic 

acid  gibberellic acid, and ethephon on artemisinin production in bulk A. annua roots. 
 

• Measure the combinatorial effects of exogenously applied phytohormone 
combinations 16, 20 and 21 (Table 1) on growth and artemisinin production in bulk 
A. annua roots. 

 
• Analyze time of addition effects of exogenously applied phytohormone combinations 

16, 20 and 21 (Table 1) on growth and artemisinin production in bulk A. annua roots. 
 

• Investigate concentration of hormone-to-root inoculum effects on growth and 
artemisinin production in bulk A. annua roots provided with a combination of 
phytohormones. 

 
• Investigate fresh medium and physical manipulation effects on growth and 

artemisinin production in bulk A. annua roots provided with a combination of 
phytohormones. 

 
• Determine peak growth and artemisinin production in bulk A. annua roots provided 

with a combination of phytohormones. 
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CHAPTER 3 
 

 
3.0. METHODS  

3.1.1. Hairy Root Initiation and Culture Conditions 

        The hairy root clone YUT16 of Artemisia annua L. (Weathers et al. 1994) was used 

in all experiments.  A half gram of roots was subcultured every 14 days and cultures were 

maintained in 50 ml of autoclaved Gamborg’s B5 basal medium (Gamborg et al. 1968) 

supplemented with 3% (w/v) sucrose at pH 5.7 in 125 ml Erlenmeyer shaker flasks under 

continuous cool white fluorescent light (2-5 µmol M-2 s-1) at 25 º C on an orbital shaker at 

100 rpm (Labline Instruments Inc., Melrose Park, IL).   For experiments, 0.5 g fresh weight 

of healthy root tissue (transparent white) from 14-day-old cultures, grown as above, was 

inoculated into 50 ml of filter sterilized (0.22µm Vacucap™ 60 filter, Pall-Gelman Sciences 

Ann Arbor, MI) Gamborg’s B5 basal medium at pH 5.7 and with 3% (w/v) sucrose. 

 

3.1.2. Individual Effects of Phytohormones on Hairy Root Cultures:  In Flasks 

      To gauge the affects of individual hormones on biomass accumulation and 

artemisinin production, the following filter sterilized hormones (0.22 µm Acrodisc™ syringe 

filters, Pall-Gelman Sciences Ann Arbor, MI) were added individually to roots grown in 

flasks: ABA, 5-1-hydroxy-2-6-6-trimethyl-4-oxocyclohex-2-en-lyl-3-methyl-[2E,4E]-

pentadienoic acid; ethephon, 2-chlorophosphonic acid; GA3, acetyl gibberellic acid; NAA, α-

napthalene acetic acid ; IAA, 3-indole acetic acid; and  BAP, benzylaminopurine (all from 

Sigma Aldrich Chemical, St. Louis, MO).  The experiments were run using medium B5 as 

described above with an inoculum of 0.5 grams fresh weight of healthy root tissue in each 
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flask.  Cultures were grown in triplicate.  Hormone concentrations were: ABA at 0.1, 5.0 and 

10.0 mg/l; ethephon at 5.0, 10.0 and 15.0 mg/l; GA3 at 0.005, 0.01 and 0.02 mg/l; NAA at 

0.1, 0.5 and 1.0 mg/l; IAA at 0.1, 0.5 and 1.0 mg/l; BAP at 0.5 and 1.0 mg/l.  Hormones were 

added at the day of inoculation. All cultures were harvested after 14 days of growth and the 

artemisinin and biomass accumulation were measured as described below.   

    The effects of adding single hormones of ABA at the day of inoculation and followed 

by NAA at day 14 in an effort to determine whether or not this combination of hormones 

stimulated high levels of artemisinin as well as growth.  The experiments were run in 

medium B5 as above with a fresh weight inoculum of 0.5g.   Roots were supplemented with 

1.0 mg/l ABA at inoculation and grown for 14 days.  After 14 days of growth, the medium 

was drained and fresh medium was added to the cultures along with 0.1 mg/l of NAA, and 

roots were allowed to grow for an additional 3 days.  Cultures that were grown in medium B5 

with an equal amount of inoculum were used as controls.   

 

3.1.3. Individual Effects on Single Roots: In Six-Well Plates 

       To monitor the affects of individual hormones on growth, single hormones were 

added to 2.5cm root tips cultured in polystyrene six-well plates (Multiwell™ Primaria™ 6 

well, Becton Dickinson® Bedford, MA) according to Srinivasan et al. (1997). It is also 

possible to reuse the 6-well plates by resterilizing them (See Appendix A2). Controls 

contained only B5 medium.  A single ~ 2.5 cm root tip was inoculated into each of the six 

wells containing 5 ml of B5 medium supplemented with a single, filter-sterilized hormone at 

the day of inoculation as follows: ABA at 0.1, 5.0 and 10.0 mg/l; ethephon at 5.0, 10.0 and 

15.0 mg/l; GA3 at 0.005, 0.01 and 0.02 mg/l; NAA at 0.1, 0.5 and 1.0 mg/l; IAA at 0.1, 0.5 
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and 1.0 mg/l; and BAP at 0.5 and 1.0 mg/l.  These hormones and respective concentrations 

were chosen based on earlier experiments performed by Bunk (1996) and (T. Smith, 

unpublished data, Table 1.1).  Roots were harvested 14 days later and the number of lateral 

roots, length of each lateral, the sum of all lateral lengths, and length of the primary root, the 

lateral root density per centimeter, and the root growth unit (RGU). The root growth unit is a 

measurement of lateral root formation on growing roots.  The RGU is defined as the sum of 

the length of all lateral roots and the length of the primary root divided by the total number of 

root tips; the higher the RGU the higher the number of lateral roots being produced, and vice 

versa (Srinivasan et al. 1997, Wyslouzil et al. 2000; Yu and Doran, 1994).  

(RGU) = (∑ length of the laterals + length of primary root) (Number of root tips)-1 

Data were statistically analyzed using ANOVA™ software.  Each plate contained six 

replicates per experiment for each hormone treatment, and each experiment was repeated.  

 

3.1.4. Hormone Combination Effects on Single Roots:  In Six-Well Plates    

       To determine how a mixture of hormones affects root growth, single roots were 

inoculated into six-well plates containing hormone combinations 16, 20, and 21 shown in 

Table 1.1.  The previous fractional factorial experiments described in (Table 1.1) showed that 

combinations Nos. 16, 20 and 21, prepared in B15 medium, yielded the highest levels of 

artemisinin in her study, but resulted in poor growth.   The combinations above were also 

used to grow roots in six-well plates, but in B15 medium with hormones added at the day of 

inoculation.  Medium B15 contains 5% (w/v) sucrose and 1.0 mM and 15 mM of the 

phosphate and nitrate salts, respectively, found in normal B5 medium (Appendix A1). In a 

subsequent experiment, phytohormones were added to single roots, as above, but after 14 
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days of growth, and cultures were then harvested 3 days later at day 17.  Controls containing 

either B5 or B15 medium, with no hormones, were also harvested at day 14 and at day 17. 

Growth was measured as described for the single hormone six-well plate experiments.     

 

3.1.5. Two-Stage Cultures    

      A two-stage culture system was developed to study the affects of medium 

composition and timing of hormone treatment on root growth and artemisinin production 

(Figure 3.1).  Experiments were run in flasks using both medium B5 and B15 as controls, and 

B15 containing three different filter sterilized hormone combinations hereafter referred to as 

H16, H20 and H21 (Table 1.1).  Hormones were added either at the day of inoculation or at 

day 14.  In previous fractional factorial experiments, combinations Nos. 16, 20, and 21 

(Table 1.1) yielded the highest levels of artemisinin.  When hormones were added at 

inoculation, harvest was at day 14 (Figure 3.1).  When hormones were added at day 14, 

harvest was at day 17 (Figure 3.1).  In a third experiment, roots were provided hormones at 

day 14, but in fresh medium, and incubated for three days post-phytohormone addition and 

harvested on day 17. This experiment was done to build on the results of the prior two-stage 

experiments and on earlier work of Weathers et al. (1997) that showed maximum artemisinin 

production occurred early after subculture.  Each combination in each experiment was run in 

triplicate and each experiment was repeated.  Controls containing either B5 or B15 medium, 

without hormones, were also harvested at day 14 and at day 17.          
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Combination/Control                     Hormone Addition and Harvest (day) 
 
B5 (Control                             0--------------------------------------------14 
(No hormones)                                                                                harvest                
                                                0--------------------------------------------14---------------17 
                                                                                                                                harvest 
 
B15 (Control                           0--------------------------------------------14 
(No hormones)                                                                                harvest         
                                                0--------------------------------------------14---------------17 
                                                                                                                                  harvest             
 
B15 + Hormone                      0--------------------------------------------14        
H 16                                        add hormones                                  harvest  
                                                0--------------------------------------------14---------------17 
                                                                                                     add hormones       harvest                
 
B15 + Hormone                      0--------------------------------------------14 
H 20                                        add hormones                                   harvest 
                                                0--------------------------------------------14---------------17 
                                                                                                     add hormones       harvest 
 
B 15 + Hormone                     0--------------------------------------------14 
H 21                                        add hormones                                    harvest      
 
                                                0--------------------------------------------14---------------17 
                                                                                                    add hormones        harvest 
 
Figure 3.1.  Experimental design combinations under which the two-stage experiment was 
run. Three replicates were run for each combination.  Hormone combinations added to the 
cultures represent those combinations that produced the highest artemisinin levels found in 
Table1. 
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3.1.6. Hormone-to-Biomass Ratio Experiments 

3.1.6.1. Inoculum Size Effects on artemisinin and growth 
 
To determine whether or not the ratio of hormone-to-root mass was critical to growth and 

artemisinin production, a series of experiments was run with one of three hormone 

concentrations: the original,  ten times the original or 0.1 times the original phytohormone 

concentration of H16, H20 and H21 (Table 1.1).  Cultures fed hormones at day zero were 

inoculated with 0.5 grams of root tissue along with either the concentration of hormone H16, 

H20 or H21 at the level shown in (Table 1.1) or at one-tenth that level.  These two hormone-

to-biomass ratios are termed 10 and 1x, respectively.   Cultures fed hormones after 14 days of 

growth were assumed to have 5.0 grams of tissue and were fed hormone H16, H20 or H21 at 

concentrations equal to or ten times the level shown in (Table 1.1).  These two hormone-to-

biomass ratios are termed 1x and 10x, respectively (Figure 3.2).         

 

3.1.6.2. Fresh Medium Effects on Artemisinin and Growth 

     In a subsequent experiment, I further examined the effects of combination No. 16 

on root tissue that had been inoculated into fresh medium at day 14 in an effort to confirm 

whether or not this combination, indeed, stimulates highest levels of artemisinin.  The 

experiments were run in medium B15 as above with a fresh weight inoculum of 5.0 g.   Roots 

were not provided with hormones at inoculation and grown in medium B15 for 14 days.  

After 14 days of growth, the medium was drained and fresh medium was added to the 

cultures along with H16 and then the roots were allowed to grow for an additional 3 days 

prior to harvest at day 17.  Cultures were also grown in medium B15 under the same 

conditions without being provided H16 at day 14.   
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Combination/Control                        Hormone Addition and harvest (day) 
B5 (Control                             0--------------------------------------------14 
(No hormones)                                                                                harvest      
           
                                                0--------------------------------------------14---------------17 
                                                                                                                                harvest 
 
B15 (Control                           0--------------------------------------------14 
(No hormones)                                                                                harvest         
 
                                                0--------------------------------------------14---------------17 
                                                                                                                                  harvest   
           
B15 + Hormone                      0--------------------------------------------14        
H16                                         add hormones (0.1x or 1x) +            harvest  
                                                      5.0 gram of root tissue   
                                                0--------------------------------------------14---------------17 
                                                                                  (1x or 10x) add hormones +    harvest    
                                                                                     5.0 gram of root tissue   
B15 + Hormone                      0--------------------------------------------14 
H20                                         add hormones (0.1x or 1x) +             harvest 
                                                    5.0 gram of root tissue   
                                                0--------------------------------------------14---------------17 
                                                                                 (1x or 10x) add hormones +     harvest 
                                                                                     5.0 gram of root tissue   
B 15 + Hormone                     0--------------------------------------------14 
H21                                         add hormones (0.1x or 1x) +               harvest      
                                                    5.0 gram of root tissue   
                                                0--------------------------------------------14---------------17 
                                                                               (1x or 10x) add hormones +      harvest 
                                                                                    5.0 gram of root tissue   
 
Figure 3.2.  The combinations under which the hormone concentration to biomass ratio 
experiments were run. Three replicates were run for each combination.  Hormones added at 
day 0 are added at concentrations of either one tenth or at the original concentration run in 
the two-stage culture experiment (Figure 3.1, Table 1.1).  Those added at day 14 are in 
concentrations of either the original or ten times those in (Table 1.1).  
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3.1.7. Fresh Medium and Manipulation effects on Artemisinin and Growth 

In order to determine if there is both a fresh medium and physical manipulation effect 

on artemisinin production and biomass accumulation, roots were supplemented with no 

hormones at inoculation and grown in medium B15 for 14 days in 2.8-liter Fernbach flasks.  

After 14 days of growth, the medium was drained and saved.  The roots were rinsed 3x with 

distilled sterile water to wash residual medium from the roots.  Five-gram aliquots of 

fourteen-day-old roots, from the Fernbach flasks, were chopped or gently transferred, blotted, 

weighed and inoculated into 125 ml culture flasks on day 14. Either fresh medium or the old 

medium, saved from the prior growth, was added to 125 ml culture flasks cultures along with 

the original phytohormone concentration found in H16 (Table 1.1).  These cultures were 

allowed to grow for an additional three days prior to harvest at day 17.  Control cultures were 

grown in medium B15 under the same conditions but without being provided H16 at day 14.   

 

3.1.8 Determination of Peak Artemisinin Production Time 

In order to determine when the maximum artemisinin production occurred post- 

hormone addition, roots were harvested every two days, post-hormone addition, for six days.  

Roots were supplemented with no hormones at inoculation and grown in medium B15 for 14 

days in 2.8-liter Fernbach flasks.  After 14 days of growth, the medium was drained and 

saved.  The roots were rinsed 3x with distilled sterile water to wash residual medium from 

the roots.  Five grams of fourteen-day-old roots, from the Fernbach flasks, were chopped, 

blotted, weighed, and inoculated into 125 ml culture flasks on day 14. Fresh medium was 

added to 125 ml culture flasks along with the original concentration of phytohormones found 

in H16 (Table 1). The roots were allowed to grow for an additional six days.  Three random 
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cultures were harvested every two days post-hormone addition until day six.  Control cultures 

were grown in medium B15 under the same conditions without being provided H16 at day 

14.   

 
3.1.9 Biomass Determination and Artemisinin Extraction 

      Harvested roots were rinsed three times with 15 ml of distilled water to remove 

medium salts, blotted gently to remove excess water, and finally weighed on a Mettler™ AE 

163 electronic balance (Caley and Whitmore Corporation, Somerville, MA) to obtain their 

fresh weight. Artemisinin was extracted from two grams of roots with six ml of toluene (3 ml 

gram-1) in 13 x 100 mm disposable borosilicate glass tubes (Fisherbrand® Pittsburg, PA), by 

sonication in a waterbath sonicator (FS60 Fisher Scientific,) for 30 minutes at 4 º C.  After 

sonication the samples were centrifuged for ten minutes at 6 x g (HN-S centrifuge, 

International Equipment, Needham Heights, MA) and the supernatant was decanted.  The 

extraction was repeated twice again with fresh toluene, and the supernatants were pooled and 

dried under nitrogen.  The dried samples can be stored indefinitely at –20 º C in covered 

borosilicate glass tubes until high pressure liquid chromatography (HPLC) analysis. 

 
 

3.2.0 HPLC Analysis of Artemisinin 

      Artemisinin was assayed by HPLC (Waters Associates, Milford, MA) as described by 

Smith et al. (1997).  The samples were hydrolyzed to the Q260 derivative as follows.  Dried 

toluene extracts were resuspended in 100 µl of methanol and 400 µl of 0.2% NaOH (w/v), 

mixed thoroughly and heated for 35 minutes at 50 º C.  The reaction was quenched with 100 

µl of methanol and 400 µl of 2.0 % acetic acid (w/v) to bring the sample to 1.0 ml.  The 
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samples were mixed thoroughly and immediately placed on ice to stabilize them.  The 

samples were filtered (0.22 µm FP-200 13mm FP-Vericel™ membrane filter, Pall-Gelman 

Laboratory) and run on a reverse phase C-18 HPLC column (15 cm Microsorb-MV™ C-18 

column with a 4.6 mm i.d. and containing 5 um beads of 100 Å pore size, Varian Analytical 

Instruments, Walnut Creek, CA) at 1 ml min-1.  The mobile phase contained 0.22µm filtered 

0.01 M phosphate buffer pH 7.0 and methanol (55:45, v/v).  After mixing, the pH of the 

mobile phase was again adjusted to 7.0 with 0.4 N HCL.  Artemisinin was quantified based 

on an external standard (Sigma-Aldrich, St. Louis, MO). 

 
3.2.1. Verification of Artemisinin Concentrations 

       Co-injection was used in order to positively identify peaks as artemisinin.  Suspected 

artemisinin peaks were noted, and their area recorded from the original sample that was run.  

An aliquot of a concentrated, Q260 derivatized, filtered (0.22 µm FP-200 13mm FP-

Vericel™ membrane filter, Pall-Gelman Laboratory) artemisinin standard (Sigma-Aldrich, 

St. Louis, MO) solution was added to the analyzed sample to achieve an artemisinin peak 

area about four times that of the area of the putative artemisinin peak.  If the putative peak 

increased in area to an amount that was 4-5 times its original area, the peak was determined 

to be artemisinin.  Quantitation was based on the original injection prior to the addition of the 

standard.  
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CHAPTER 4 
 
4.0. RESULTS  
 
4.1. Individual Phytohormone Effects on Root Growth   
          In the previous experiments shown in Table 1.1, three combinations of 

phytohormones yielded increased levels of artemisinin while severely inhibiting the growth 

of the root cultures.   Moreover, to my knowledge, the individual affects of NAA, GA3, 

ethephon, ABA, and BAP on hairy root development of A. annua have not been previously 

reported.  Thus, it was useful to investigate the individual roles that these phytohormones 

have on root growth.  Growth was measured of both bulk roots, in flasks, and single roots 

grown in six-well plates.  

 
 
4.1.1. Single Root Responses   

Six-well polystyrene plates were used to monitor the affects of the individual 

phytohormones on the growth of single roots after 14 days of growth.  Within each hormone 

concentration series, the yield of root mass usually decreased as the concentration increased 

(Table 4.1).  Single roots grown in medium B5 with 0.01 mg/l GA3 produced the highest 

values in terms of the number of lateral roots, length of the primary root, lateral root tip 

density, total lateral root length, and total root length.  However, roots grown in GA3 did not 

have the highest RGU.  Roots grown in IAA at concentrations of 0.01 and 1.0 mg/l had 

essentially the same RGU values as those grown in either 0.01 mg/l GA3 or 0.02 mg/l GA3, 

and all concentrations of ABA.   High RGU values indicate a high level of lateral branching 

and low RGU values represent low levels of lateral branching.  Roots in each hormone 
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Table 4.1 Growth response of single root tips grown for 14 days in medium B5 with hormones provided at different concentrations.                             

 

Hormone concentration (mg/l) Root Characteristic B5 
NAA 0.01 NAA 1.0 NAA 5.0 IAA 0.01 IAA 1.0 IAA 5.0 GA 0.01 GA 0.02 

No. of laterals  8.00     9.50 a,m      8.7 b,m 4.67 c    30.71 a    25.50 b    13.50  c    94.67  a,x    62.17 b 

Length of Primary (cm) 3.20    2.86 a      2.6 b 2.50 c    2.80   a    2.83   a    2.53   b    7.13   a,x    5.37   b 

Lateral Density (lat/cm) 2.20    3.23 a,m    3.40 a     1.87c    10.69 a    8.57   b    5.31   c    13.51 a,x    11.68 b 

Total Length of Laterals (cm) 7.87    7.00 a,m    4.63 b 1.20 c    21.80 a    17.65 b    2.43   c    84.77 a,x    54.17 b 

AVG Lateral Length (cm)  1.33 x    0.67 a    0.46 b 0.22 c    0.78   a    0.72   a    0.16   c    0.97   a    0.56   b 

Total Root Length (cm) 11.07    9.87 a    7.18 b 3.70 c    24.60 a    20.48 a    4.97   c    91.90 a,x    59.53 b 

RGU  0.77     0.75 a,m    0.65 b,m     0.32c    0.90   a,x    0.88   a,x    0.50   c     0.97  a,x    0.96   b,x

 

Hormone concentration (mg/l) Root Characteristic B5 
ABA 1.0 ABA 5.0 ABA 10.0 ETHE 5.0 ETHE10.0 ETHE 15.0 BAP 0.5 BAP 1.0

No. of Laterals  8.00   56.00  a 31.67 b    16.50 c    5.67 a    5.83 a    5.50 a   12.20a    7.13 b 
Length of Primary (cm) 3.20  5.03   a 3.10   b,m    2.22   c    2.50 a    2.50 a    2.50 a    2.60 a    2.54 b 
Lateral Density (lat/cm) 2.20 10.84 a 8.37   b    5.08   c    2.27 a,m    2.33 a,m    2.20 a,m     4.51a    2.67 b 
Total Length of Laterals (cm) 7.87   54.43 a 31.45 b    13.67 c    1.85 a    1.33 b    1.33 b    1.83 a    0.86 b 
AVG Lateral Length (cm)   1.33 x      1.00 a,m 0.73   b    0.55   c    0.32 a    0.23 b    0.25 b    0.15 a    0.12 b 
Total Root Length (cm) 11.07     59.47 a 34.55 b    15.88 c    4.35 a    3.83 b    3.83 b    3.45 a    3.91 b 
RGU   0.77      0.96 a.x 0.93   a,x    0.84   b,x    0.43 a    0.35 b    0.35 b    0.48 a    0.40 b 

Note:  The letters “a, b, and c” represent significant differences between roots within a hormone concentration series; the letter “m” 
indicates statistical similarity when comparing roots grown in each hormone concentration to the medium B5 controls; “x” represents 
the maximum value when comparing all hormone concentrations and the B5 control roots.  Statistical test was done using ANOVA™ 
at p<0.05. 
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concentration series, other than ethephon and BAP, produced higher growth measurements 

than the B5 controls, except for average lateral root length (Table 4.1).   

 

4.1.2. Bulk Growth 

  The hormone IAA was tested in concentrations equivalent to those for NAA.  This 

was done to determine whether or not the natural auxin, IAA, was more effective in affecting 

growth than the synthetic NAA.  Roots provided with either NAA or IAA appeared to yield 

comparable levels of root biomass (Figure 4.1). Generally, biomass was inversely 

proportional to the concentration of phytohornmone for each of the six hormones tested 

(Figure 4.1).  Those cultures incubated in ethephon yielded the lowest root growth of all 

control and experimental flasks assayed and appeared very callused and dark brown after 14 

days. All cultures provided with ABA produced the highest biomass levels.   One and 5 mg/l 

concentrations of ABA stimulated the highest production of root biomass (Figure 4.1).  In 

contrast, roots cultured in BAP grew poorly.   

 

4.1.3. Phytohormone Combination and Time of Addition Affects Growth                                

Earlier work by Bunk (1997) had suggested that the hormones GA3, ethephon, ABA, 

and NAA would stimulate growth of A. annua hairy roots. Subsequent multi-factorial 

experiments by Smith (Table 1.1) showed that hormone addition at the time of inoculation 

adversely affected root growth. Consequently, it seemed reasonable to determine what effect 

later addition of phytohormones had on root growth and artemisinin production. 
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Figure 4.1. The effects of individual phytohormones added at day 0 on growth in cultures 
harvested after 14 days of growth.. N, NAA; I, IAA; E, ethephon; A, ABA; G, gibberellic 
acid; B, BAP; B5, B5 control; NA, no addition.  The “*”, represents the highest overall value. 
Concentrations on the x-axis represent mg/l quantities of hormones added. 
 
 

4.1.3.1. Single Root Responses to Time of Hormone Addition  

In order to determine whether or not time of addition plays an important role in 

biomass accumulation, a modified version of the previous experimental six-well experiment 

was run.  Growth was measured after single roots were incubated in hormone H16, H20 and 

H21 (Table 1.1) provided either at the day of inoculation or at day 14 (Table 4.2).   
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Table 4.2.   Growth response of single root tips grown for either 14 or 17 days in medium 
B15 including H 16, H20 and H21 found in Table 1.1. 
 

Hormone addition at Day 0   
Root Characteristic B15 N/H H16  H21  H20  

No. of Laterals     12.67 x 5.17 a 7.00 b 8.33 c 
Length of Primary (cm)      4.03 x 2.50 a 2.50 a 2.50 a 
Lateral Density (lat/cm)      3.25 x 2.07 a 2.80 b         3.33 c,x 
Total Length of Laterals (cm)    10.12 x 0.70 a 0.70 a 0.83 a 
AVG Lateral Length (cm)      0.75 x 0.14 a 0.10 a 0.10 a 
Total Root Length (cm)    12.53 x 3.20 a 3.20 a 3.33 a 
RGU       0.35 x 0.22 a 0.22 a 0.25 a 
 

Note:   The letters “a, b, and c” represent statistically significant differences between H16, 
H20 and H21; “m” indicates statistical similarity when comparing the roots grown in each 
hormone concentration to the medium B15 controls; “x” refers to the maximum value of all 
the hormone combinations and the B15 control. N/H = No hormones provided.  Statistical 
test done using ANOVA™ at p<0.05.  

Hormone addition at Day 14   
Root Characteristic B15 N/H H16  H20  H21  

No. of Laterals       12.87     15.23 a,x       12.35 b     12.51 b 
Length of Primary (cm)        4.00 x      4.10 m,a,x         3.95 m,a,x      3.95 m,a,x 
Lateral Density (lat/cm)        3.31      3.68 a,x         3.09 b      3.02 b 
Total Length of Laterals (cm)      10.24     14.95 a,x       12.52 b    13.80 c 
AVG Lateral Length (cm)        0.81      1.00 a,x         0.95 a,x      0.85 m, b 
Total Root Length (cm)      12.75    14.23 a,x         9.62 b      9.25 b 
RGU        0.40 x     0.45 m,a,x        0.36 m,b,x      0.38 m, b,x 

 
 

Root tips provided with phytohormones at the day of inoculation (day 0) only 

produced higher numbers of laterals than those simply grown in medium B15. Indeed roots 

provided with hormone combinations at the day of inoculation were growth inhibited 

compared to the B15 control, except in terms of lateral density (Table 4.2). Roots 

supplemented with H16, H20 and H21 fourteen days post-inoculation, showed significantly 

more growth than the B15 controls at 17 days compared to cultures supplemented at the day 

of inoculation.  These roots produced more laterals, longer laterals and primary roots, and a 
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greater overall root length than the medium B5 controls. Roots grown in H16 produced the 

highest root measurements overall (Table 4.2).  

When root growth in B5 medium was compared to that in B15 medium, roots grown 

in medium B5 produced the highest growth response values in all root characteristics except 

length of the primary root, average lateral length, and the RGU (Table 4.3).  While not true 

for all root characteristics of growth, roots cultured in medium B5 appeared to produce more 

root growth than those cultured in B15 after 14 days of growth (Table 4.3). 

 
Table 4.3.   Growth response of single root tips after 14 days in medium B5 or medium B15. 
 

Root Characteristic B5 B15 

No. of Laterals                   8.00  m                2.67  
Length of Primary (cm)                  3.20                 4.03  m 
Lateral Density (lat/cm)                  2.20  m                0.92  
Total Length of Laterals (cm)                  7.87  m                3.03  
AVG Lateral Length (cm)                  1.33  m                1.24  m 
Total Root Length (cm)                 11.07 m                7.07  
RGU                  0.77  m                0.65  m 
Note:  The letter “m” indicates statistical difference when comparing the roots grown in 
medium B15 to roots grown in medium B5 after ANOVA™ at p<0.05. 
 

4.1.4. Bulk Growth: Two-Stage Culture System 

To examine whether or not time of hormone addition played an important role in 

biomass accumulation, a modified version of the previous experimental design (Figure 3.1) 

was run using the three hormone combinations, H16, H20, and H21 from table 1.1.  

Hormones were added to cultures either at day 0 or at day 14 and harvested at day 14 and 17, 

respectively. Cultures supplemented with phytohormones at the day of inoculation grew very 

poorly (Figure 4.2A). There was also rapid disorganization of the root matrix resulting in 
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callused tissue and suspension cells (data not shown). Although, H20 and H21 stimulated 

growth a little above that of roots cultured with H16, none of the cultures provided hormones 

at day 0 grew better than the B15 controls (Figure 4.2A).  This was in agreement with earlier 

work performed in our laboratory (T. Smith, Table 1.1).  

However, when cultures were provided hormones at day 14 of the culture cycle and 

allowed to grow an additional three days, those cultured in H16 stimulated the highest levels 

of root biomass compared to roots provided with either  H20 or H21 and the 17 day B15 

controls.  This suggests that combination 16 is stimulatory to growth, but only when added 

later in the developmental cycle of the roots.   

Cultures grown in medium B15 and harvested at day 14 grew better than the B5 

controls. Both medium B5 and B15 control roots produced higher biomass levels than roots 

grown in H16, H20 and H21 when hormones were added at inoculation.      

 
4.1.5. Effect of the Hormone-to-Biomass Ratio 

At inoculation, the ratio of hormones to biomass provided in the previous experiments was 

about 10 times that produced upon hormone introduction at day 14. The poor growth 

observed in cultures fed hormones at day zero might, thus, be in response to the higher 

specific hormone concentration.  Experiments were, therefore, conducted to test the effect of 

the hormone-to-biomass ratio on root growth.  

To study whether or not the ratio of hormone-to-root mass was critical to growth, 

roots that were provided hormones at day zero and harvested at day 14. Hormones were 

supplied at the concentrations of H16, H20, or H21 at the level shown in Table 1.1, or 
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Figure 4.2 The effects of phytohormones on the biomass accumulation of hairy root 
cultures of A. annua.  A, all cultures harvested after 14 days of growth; hormone cocktails 
No. 16, 20, and 21 were added at day zero to roots growing in B15 medium.  B, all 
cultures were harvested after 17 days of growth; hormone cocktails No. 16, 20, and 21 
were added  at day 14 to roots growing in B15 medium and then were allowed to grow 
three days prior to harvest.  

 

 

 

at one-tenth that level.  Cultures provided hormones at day 14 and harvested at day 17 were 

provided hormones either at the level shown in Table 1.1 or at 10 times that level (Figure 

3.2).  In this way each group of roots was provided hormones at a ratio of 1:1 or 10:1 of 

biomass. 
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Cultures provided at day 0 with one-tenth the original hormone concentrations 

exhibited significant growth increases when compared to roots in which the original 

concentrations were used (Figure 4.3).  Roots cultured in one-tenth the concentration of  

H16, H20 and H21 displayed roughly twice the biomass of their 1x counterparts. Compared 

to their B15 controls, however, root growth was still significantly less (Figure 4.3). When 14-

day-old root cultures were supplied with ten times the original phytohormone concentrations 

used in experiments shown in Table 1.1, growth was also inhibited compared to roots that 

were fed the original concentrations (Figure 4.4).  Growth inhibition was particularly high for 

roots grown in H16 10x.  Interestingly, roots grown in combination 21 showed no growth 

inhibition after the higher 10x concentration.  Of particular interest is the result showing that 

roots incubated with original concentration, 1 x of combination 16, stimulated root growth 12 

percent above the medium B15 controls.  Taken together these results show that there is, 

indeed, a significant ratio effect of hormones on growth.  However, other factors are also at 

play because hormones fed at day 14 stimulated root growth beyond the B15 controls. 

Decreasing the hormone concentration at inoculation was still inhibitory towards growth 

(Figure 4.3).  

The roots that were provided with hormones on day 14 were not subjected to the 

stress of subculture.  In fact, these cultures were 14 days removed from that stress.  

Therefore, it was conceivable that physical manipulation or addition of fresh medium would 

also likely influence growth.   
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Figure 4.3. The effect on root growth of hormones added at different phytohormone-to-biomass 
ratios at day zero. Cultures were harvested at 14 days.  Cultures were provided hormones either at 
the concentration shown in Table 1.1 or at one-tenth that level. The “*” represents the highest 
biomass value in the experiment.  
 

 

4.1.6. Fresh Medium Effect on Growth 

Experiments were run using a consistent, high amount of inoculum (5.0 grams) from 

14-day-old cultures, in order to begin to determine if there was, indeed, a fresh medium 

influence on the amount of biomass produced in the presence of phytohormones as described 

in the previous experiments.  Root growth was stimulated in all of the cultures by using fresh 

medium compared to cultures in Figure 4.4.  Also, cultures supplied with ten times the 

original concentrations of H16, H20 or H21 showed no significant growth inhibition when 

compared to roots in which the original concentrations were used (Figure 4.5).   Roots grown 

in the original concentrations of combination 16 produced, though barely, the highest levels  
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Figure 4.5 The effect on growth of hormones added at different phytohormone ratios 
and after provision of fresh medium to 5 grams of 14-day-old roots. Harvest was three 
days later. Cultures were provided hormones either at the concentration shown in 
Table 1.1 or at 10 times that level. The “*” represents the highest biomass value in the 
experiment. Letters (a and b ) indicate a significance when comparing B15 medium 
controls, where “a” corresponds to the B15 controls.  
 

Figure 4.4.  The effect of change in phytohormone-to-inoculum ratio added at day 14 
on root growth of cultures harvested after 17 days of growth. Cultures were provided 
hormones either at the concentration shown in Table 1.1 or at 10 times that level. The 
“*” represents the highest biomass value in the experiment.  
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of biomass.  All the cultures seemed to produce comparable levels of biomass when 

compared to the medium B15 control, except for those roots cultured in both 1x and 10x 

concentrations of combination 21 where growth was still inhibited.  It appears as if the 

addition of fresh medium to the culture obscures the ratio effect seen in Figures 4.3 and 4.4.  

This raises the question of whether the increases in biomass accumulation were the result of 

fresh medium addition, the manipulation of the culture (subculturing), or a combination of 

both.    

 

4.1.7. Fresh Medium and Culture Manipulation Effects on Growth 

To determine if there is both a fresh medium and a physical manipulation effect on 

artemisinin production and biomass accumulation, a series of experiments was run such that 

either old or fresh medium and teased or chopped roots were added at day 14 along with the 

optimum growth concentration for H16.  Figure 4.6, shows that roots chopped and then 

grown in fresh medium do not significantly increase in mass unless hormones are also 

present (Figure 4.6).  It is apparent that there is, indeed, a fresh medium and subculturing 

effect, albeit small, on the hairy roots of A. annua.  While three days is a sufficient amount of 

time in which to quantitate a significant growth response, it is not clear whether not 

maximum growth occurs by three days post-hormone addition or later. 

 

4.1.8. Determination of Peak Growth Post-Hormone Addition 

In order to determine when the maximum biomass accumulation occurred post- 

hormone addition, roots were sampled, post-hormone addition, for six days.  In the presence 

of hormone combination 16 and those grown without hormones, growth was linear for six  
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days (Figure 4.7). Thus, the maximum growth yield occurs later some where beyond three 

days post addition.  

 

4.2. Individual Phytohormone Effects on Artemisinin Production 

The individual affects of NAA, GA3, ethephon, ABA, and BAP on hairy root 

development of A. annua have not been previously reported.  Thus, it was useful to measure 

the effect that these phytohormones play on secondary metabolite production (i.e. artemisinin 

accumulation). 

 

 

Figure 4.6. The effect on growth of hormones added at the original concentration of 
combination 16 at day 14 either in the presence or absence of fresh medium and or physical 
manipulation or both. FM, fresh medium added; SC, roots were chopped (physical 
manipulation). Cultures were harvested three days later. The “*” represents the highest value 
in the experiment. Letters “a” and “b” indicate significance when compared to B15 medium 
controls, where “a” corresponds to the B15 controls. 
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Figure 4.7 The effect on growth of hormones added at the original concentration of 
combination 16 at day 14 with fresh medium and physical manipulation. Cultures were 
harvested as shown above. The three day points were taken from Figure 4.6.  All points 
represent the average of three samples. B15, no hormone addition; H16, hormone addition.
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Figure 4.8 The effects of individual phytohormones added at day 0 on artemisinin 
production in cultures harvested after 14 days of growth. The “*”, represents the highest 
overall value. N, NAA; I, IAA; E, ethephon; A, ABA; B, BAP; and B5, B5 control; NA, 
no addition. Concentrations on the x-axis represent mg/l quantities.  
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4.2.1. In Flasks: Bulk Artemisinin Production 

Of the six individual hormones studied (Figure 4.8), it was observed that all 

concentrations of NAA produced the highest amounts of artemisinin, nearly 70 times higher 

than in cultures where artemisinin was barely detectable.  Roots incubated in IAA yielded 

significantly less artemisinin than roots grown in NAA, at the same concentrations (Figure 

4.8). These results show that providing cultures with the natural auxin, IAA, was more 

effective in inhibiting artemisinin accumulation than the synthetic NAA. Indeed IAA, 

ethephon, and ABA significantly inhibited artemisinin production compared to cultures fed 

5.0 mg per liter NAA.  Roots fed GA3 and BAP produced considerably less artemisinin. No 

culture produced less artemisinin than those grown in ethephon. No disorganization of the 

root matrix was observed in any culture.   

 
 
4.2.2. Two-Stage Application of a Four Hormone Combination:  Affect on                             

Artemisinin Production 
 

In order to study the affects of medium composition and timing of a four-hormone 

treatment on artemisinin production, cultures were provided either with hormones at the day  

of inoculation or after 14 days of growth (Figure 3.1).  When phytohormones were added at 

the day of inoculation, (Figure 4.9), artemisinin production in H16 was about three times that 

of roots grown in either H20 and H21 (Figure 4.9A).  However, roots grown in H16 

produced 30% less artemisinin than roots grown in medium B15, and 65% less than in B5.   

Roots grown in both H20 and H21 yielded 25% the artemisinin produced in roots incubated 

in medium B15.   Also, when hormones were added at inoculation, cultures grown in 
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medium B5 for 14 days produced roughly twice as much artemisinin than roots  cultured in 

medium B15.   

When roots were allowed to grow 14 days prior to phytohormone addition, they 

displayed a very different artemisinin production profile (Figure 4.9 B).  Roots grown in H16 

showed significant increases in specific artemisinin levels produced after 17 days of growth 

(Figure 4.9B) compared to their 14 day counterparts (Figure 4.9 A) and all other 17 day 

cultures (Figure 4.9 B).  Also, after 17 days of growth, the cultures grown in medium B15 

had greater specific artemisinin levels than those cultured in medium B5 (Figure 4.9 B), but 

less than their 14 day counterparts (Figure 4.9A).   

Interestingly, when comparing the highest amount of artemisinin produced in cultures 

harvested at day 14 to the highest amount produced in those cultures harvested at day 17, the 

two-stage culture system seemed to provide no advantages in terms of increasing the specific 

artemisinin levels in roots (Figure 4.9A and B).  Taking into account the biomass yield on a 

per liter basis, artemisinin production was not significantly different than levels in roots 

grown in combinations 16, 20 and 21, when hormones were supplied at inoculation, and was 

still considerably less than the B15 control. Even the B5 cultures produced more artemisinin 

(Figure 4.10 A).  However, after 17 days of growth, the cultures fed hormones at day 14 

provided a very different picture.  Roots grown in H16 had total artemisinin yields 

significantly greater than B15, or B5 cultures and any of the other hormone combinations.  

However, total artemisinin levels still did not surpasses that of 14-day-old B5 cultures 

(Figure 4.10A and B).  

 

 

 
 

49



 
 

50
 

Figure 4.9 The affects of phytohormones on artemisinin production of hairy root cultures 
of A. annua.  A, all cultures harvested after 14 days of growth; hormone cocktails No. 16, 
20, and 21 were added at day zero to roots growing in B15 medium.  B, all cultures            
were harvested after 17 days of growth; hormone cocktails No. 16, 20, and 21 were added  
at day 14 to roots growing in B15 medium and then were allowed the grow three days 
prior to harvest.  
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Figure 4.10 The overall affects of phytohormones on artemisinin production of hairy 
root cultures of A. annua.  A, all cultures harvested after 14 days of growth; hormone 
cocktails No. 16, 20, and 21 were added at day zero to roots growing in B15 medium.  
B, all cultures were harvested after 17 days of growth; hormone cocktails No. 16, 20, 
and 21 were added  at day 14 to roots growing in B15 medium and then were allowed 
the grow three days prior to harvest.  



4.2.3. Effect of the Hormone-to-Biomass Ratio on Artemisinin Production 

 At inoculation, the ratio of hormones-to-biomass provided in the previous 

experiments was at a concentration about 10 times that provided to 14-day-old root cultures. 

The low levels of artemisinin observed in cultures fed hormones at day 0 might, therefore, be 

in response to the higher specific hormone concentration.  Experiments were, therefore, 

conducted to test the effect of hormone-to-biomass ratio on root growth  

To determine whether or not the ratio of hormone-to-root mass was critical to 

artemisinin production, cultures harvested at day 14 were supplied with the concentrations of 

H16, H20 or H21, either at the level shown in Table 1.1, or at one-tenth that level.  Cultures 

harvested at day 17 were provided hormones at day 14 either at the level shown in Table 1.1 

or 10 times that level (Figure 3.2).   In this way each group of roots was provided hormones 

at a ratio of 1 to 10 of biomass.    

Cultures supplied at day 0 with one-tenth the original hormone concentrations 

exhibited significant increases in artemisinin production when compared to roots in which  

the original concentrations were used (Figure 4.11).  Roots cultured in one-tenth the 

concentrations of H16 and H20 displayed roughly twice the artemisinin levels of their 1x 

counterparts.  However, roots cultured in H21 produced almost comparable levels of 

artemisinin at both hormone-to-biomass ratios (Figure 4.11).  

When root cultures were fed the two ratios of hormones-to-biomass at day 14, similar 

responses were observed. Root cultures supplied with ten times the original concentrations 

showed significant artemisinin decreases when compared to roots grown in the original 1x 

concentrations (Figure 4.12).  Furthermore, roots cultured in ten times the concentrations of 

H16, H20 and H21 produced as much as 50% less artemisinin than their 1x counterparts.   In  
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Figure 4.11.  The effect on artemisinin production of hormones added at different phyto-
hormone-to-biomass ratios at day zero. Cultures were harvested at day 14.  Cultures were 
provided hormones either at the concentration shown in Table 1.1 or at one-tenth that level.
The “*” represents the highest biomass value in the experiment.  

 

 

 

 

 

 

 

 

 

 
Figure 4.12. The effect on artemisinin production of hormones added at different phyto-
hormone-to-biomass ratios at day 14.  Cultures were harvested after three additional days 
of growth. Cultures were provided hormones either at the concentration shown in Table 
1.1 or at 10 times that level. The “*” represents the highest artemisinin value in the 
experiment.  
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contrast, roots incubated in the original concentration of H16, had artemisinin levels greater 

than100 % above levels observed in B15 controls.  Roots grown in both ratios of H20 and 

H21 produced lower artemisinin levels than those cultured in medium B15.  Roots grown in 

both ratios of H16 yielded concentrations of artemisinin that were higher than those produced 

in roots cultured in medium B15 (Figure 4.12).   

These data, in concert with the data in Figure 4.3, and 4.4, show that the hormone-to-

biomass ratio has a strong influence on both growth and artemisinin production for roots 

inoculated at day zero and at day 14.  Furthermore, three days appears to be a sufficient 

amount of time in order to quantitate root responses to phytohormone treatment, although it 

is not clear when artemisinin production and biomass accumulation are at optimum yield.  

The roots that were provided with hormones on day 14 were not subjected to the stress of 

culture manipulation, only the addition of fresh media.    

 

4.2.4. Effects of High Inoculum levels and Fresh Medium on Artemisinin 
Production 

 
Experiments were run using a consistent, high amount of inoculum (5.0 grams) from 

14-day-old cultures in order to determine if there was an effect of fresh medium and physical 

manipulation on the amount of artemisinin produced in the cultures in the presence of two 

different levels of phytohormones (1x and 10x).  After three days of incubation, roots were 

harvested from either 1x or 10x hormone concentrations H16, H20 or H21.    

Figure 4.13 shows roots grown in fresh medium in the presence of phytohormones 

produced roughly twice as much artemisinin as roots not supplied with fresh medium, or 

roots grown in the presence of hormones without addition of fresh media (compare to Figure 

4.11 and 4.12).  The fact that only a doubling in artemisinin concentration was observed  
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Figure 4.13. The effect on artemisinin production of hormones added at different phyto-
hormone-to-biomass ratios and after provision of fresh medium to 5 grams of 14 day old 
roots. Harvest was three days later. Cultures were provided hormones either at the 
concentration shown in Table 1.1 or at 10 times that level. The “*” represents the highest 
value in the experiment.  

 
 
 
when comparing roots subcultured into fresh medium to roots where fresh medium was not 

provided, suggests that the response was additive.   Taken together, these data confirm two 

things:  (1) there is a phytohormone-to-biomass ratio influence on artemisinin production, 

and (2) that the additions of fresh medium supplemented with hormones either stimulates 

terpenoid biosynthesis, or prevents the catabolism of the product, artemisinin.  This raises the 

question of whether or not the increased artemisinin was the result of fresh medium addition, 

physical manipulation of the culture (chopping), or a combination of both.    
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4.2.5. Analysis of Fresh Medium and Manipulation Effects on Artemisinin              
Production 
 

In order to better analyze fresh medium and physical manipulation effects on 

artemisinin production and biomass accumulation, a series of experiments was run in 2.8 L  

Fernbach flasks where either old or fresh medium, and/or teased (no chopping) or chopped 

roots were added at day 14 to the optimum growth phytohormone-to-biomass ratio for H16 

(0.1x).  

When fresh media was provided along with physical manipulation of the roots, the 

artemisinin levels were about two times as much as the artemisinin levels seen in roots where 

either one procedure or the other had been performed.  This suggests that the addition of 

fresh medium together with subculture has an additive effect on artemisinin production 

(Figure  4.14). Furthermore, Figure 4.14 shows that in the presence both old medium and 

mock subculture (teased), hormones seem to play a critical role in stimulation of artemisinin 

production. There was roughly 100% increase in yield.  Addition of fresh medium increased 

artemisinin levels above root cultures where no fresh medium had been added or no 

subculturing had taken place. When roots were only subcultured, the same effect was 

observed as was seen for those roots where only fresh medium and hormones were provided. 

There was a 100% increase in artemisinin as compared to the B15 controls (Figure 4.14).  

Indeed it is apparent that there is a fresh medium and subculturing effect on the hairy roots of  
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Figure 4.14.  The effect on artemisinin production of hormones added at the original 
concentration of combination 16 at day 14 either in the presence or absence of fresh  
medium and or physical manipulation or both. Cultures were harvested three days later.  
The “*” represents the highest value in the experiment. FM, fresh medium addition; SC,  
physical manipulation. 
  

 

A. annua. While it is apparent that three days is a sufficient amount of time in which to 

quantitate a significant artemisinin response, it is not clear whether not maximum production 

phosphate occurs three days post-hormone addition. 

 

4.2.6. Determination of Peak Artemisinin Production Post-Hormone Addition 

In order to determine if the maximum artemisinin production response occurs three 

days post-hormone addition, roots were assayed for artemisinin for six days post-hormone 

addition. Cultures that were grown in the presence of hormone combination 16 produced 

artemisinin almost linearly for six days, ultimately reaching about 1µg g -1 FW (Figure 4.15).   

In contrast, roots grown without hormones steadily declined in their artemisinin production 
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(Figure 4.15).   Thus, maximum artemisinin production occurs more than three days post-

hormone addition. 
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Figure 4.15. The effect on artemisinin production of hormones added at the original 
concentration of combination 16 at day 14 with fresh medium and physical manipulation. 
Cultures were harvested at two day intervals. The three day point was taken from Figure 
4.12.  All points represent the average of three samples. B15, no hormone addition; H16, 
hormone addition.  
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CHAPTER 5  

DISCUSSION 

5.0. Summary  

The overall objective of this work was twofold: to increase fundamental 

understanding of the effects of exogenously applied phytohormones on growth and 

secondary metabolite production in hairy roots of Artemisia annua, and to develop an 

optimized two-stage culture system for artemisinin production.  To my knowledge, this 

project may serve as the first definitive evidence demonstrating favorable responses to 

exogenous combinatorial hormone application with respect to root growth and secondary 

metabolite production by any hairy root species. Detailed analysis of artemisinin and biomass 

accumulation in A. annua hairy roots in the presence of phytohormones has uncovered 

effective individual phytohormone as well as mixed phytohormone concentrations suitable 

for single and bulk root growth, and artemisinin production. Also demonstrated is an 

effective phytohormone combination that allows for suitable growth and artemisinin 

production when used in conjunction with time of addition and provision of fresh nutrients 

and mechanical stress to the culture.  While the findings in this report could still be 

optimized, they argue for the potential utility of a two-stage production scheme, 

incorporating combinatorial phytohormone use in concert with optimized growth medium to 

overproduce plant secondary metabolites in vitro.      

 

5.1. Phytohormone Effects on Growth 

Growth studies using polystyrene plates with single roots of A. annua established the 

dominance of the plant regulator gibberellic acid in many of the growth root characteristics 
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studied as well as in demonstrating the ability of the roots to produce higher amounts of root 

biomass in decreasing hormone environments (Table 4.1). Similarly, Ohkawa et al. (1989), 

Liu et al. (1997) and Bais et al. (2001) showed that GA stimulated growth of hairy roots.  

Furthermore, some studies showed that lower GA concentrations were more effective than 

higher ones (Bais et al. 2001; Ohkawa et al. 1989; Table 4.1).   

Although auxins in the presence of sucrose are known to stimulate lateral branching 

(Rolland et al. 2002),  A. annua hairy roots displayed similar branching patterns when grown 

either in IAA or GA as shown by their RGU values (Table 4.1) along with lower biomass 

accumulation in bulk cultures (Figure 4.1). Growth response to auxins is, however, not 

clearcut.  For example, Luczkiewicz et al. (2002) stated that root biomass increased in the 

presence of auxin in hairy root cultures of R. hirta L., whereas, Lin et al. (2003) 

demonstrated that auxin has little influence on hairy root cultures of L. flavum.  Considering 

that the transformation process with A. rhizogenes results in clones that are either super 

sensisitive to auxin or auxin overproducers (Giri and Narasu, 2000; Arroo et al. 1995), this 

likely explains the reported contrasting responses to auxin.  Our clone YUT-16 is likely an 

auxin overproducer because bioassays have shown auxin is present in the culture medium 

(unpublished results).  IAA is initially required to launch a population of quickly dividing 

pericycle cells that then form hormone-independent meristems (Laskowski et al. 1995), thus, 

alleviating the need for or an insensitivity to IAA (Reed et al. 1998). This may explain why 

A. annua root tips grown in IAA produced poor measurements in their number of laterals, 

length of the primary, lateral density, total length of laterals, average lateral length and total 

root length compared to tips grown in GA and even ABA (Table 4.1). At high concentrations 

IAA is also known to stimulate the production of ethylene (Crozier et al. 2000).   Perhaps the 
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concentrations tested here were sufficient to stimulate ethylene production.  This may explain 

why individual root tips grown in higher concentrations of both auxins grew poorly.    

All root cultures grown in ABA produced high levels of bulk root biomass (Figure 

4.1); although in single root studies GA was the most stimulatory (Table 4.1).  Although 

ABA can inhibit shoot growth, it does not have a similar affect on roots or may even promote 

growth of roots (Crozier et al. 2000). This may explain the increased growth seen in bulk 

cultures provided with ABA, but does not explain the single root results.   

Consistent with my results Sauerwein et al. (1992), Dhingra et al. (2000), and Luo et 

al. (2001), reported that the growth rate of transformed hairy roots with A. rhizogenes 

increased in the presence of low concentrations of cytokinins, auxin, and gibberllins. Indeed, 

maximum biomass was obtained in roots cultured in the lowest concentrations of most of the 

phytohormones tested (Table 4.1 and Figure 4.1).  

Cytokinins stimulate cell division and shoot morphogenesis (Crozier et al. 2000). 

Consistent with prior observations (Bunk, 1997), single and bulk roots grown in exogenously 

applied cytokinin (BAP) showed little lateral root initiation.  Interestingly, addition of BAP 

at these concentrations did not promote root elongation (Table 4.1).  Bais et al, (2001), 

reported that increasing the cytokinin: auxin ratio in the hairy roots of C. intybus resulted in 

decreased biomass.  There may have been a similar interplay between exogenously fed 

cytokinin and the endogenous auxin found in this clone of A. annua that is responsible for the 

decreased growth seen in cultures fed BAP.   

Single and bulk roots cultured in all concentrations of ethylene yielded the worst 

growth measurements (Table 4.1, Figure 4.1). Although exogenous addition of ethylene (10 

mg/l) to the culture medium stimulated growth of A. annua L. plantlet cultures, there appears 
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to be no report on its effects on roots (Fulzele et al. 1995).  It appears, therefore, that based 

on my study, ethylene inhibits A. annua hairy root growth.  

Time of addition of phytohormones plays a crucial role in growth both in single and 

bulk root responses (Table 4.2 and Figure 4.2, respectively) Addition of phytohormones H16, 

H20 and H21, at day zero, inhibited growth compared to the medium B5 controls. Addition 

of hormones (14 days) later in the growth cycle decreased the adverse root growth effects 

and stimulated growth in A. annua cultures, especially in H16 (Table 4.2 and Figure 4.2). 

These results suggested that the specific concentration of hormones (µg L-1 g -1 FW) was 

crucial as discussed in Section 5.4. 

 

5.2. Phytohormone Effects on Artemisinin Production.   

Unlike root growth, artemisinin content increased with increasing phytohormone 

concentration in cultures provided with NAA, IAA, ABA and GA3 (Figure 4.8). In contrast,  

cultures grown in increasing amounts of ethephon and BAP, resulted in decreased amounts of 

artemisinin (Figure 4.8).   

Sa et al, (2001), reported that increases in endogenous (iPA and PA) levels of 

cytokinin increases artemisinin content 70 % over controls. Apparently exogenous 

application of the synthetic cytokinins, BAP, used in the present studies is not as effective as 

increasing endogenous cytokinins via (ipt) gene transfer.   However, Sa and his group (2000) 

used transformed shoot cultures where cytokinin : tissue ratios are high (Crozier et al. 2000).   

In contrast, Bais et al, (2001), also reported that increasing the cytokinin : auxin ratio in hairy 

root cultures resulted in decreased secondary metabolite yields in vitro. Furthermore, the 

critical concentration of cytokinins required for artemisinin biosynthesis is not known.                                   
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 The exogenous application of phytohormones to transformed root cultures has been 

shown in some cases to result in the loss of root integrity and secondary metabolite 

production (Rhodes et al. 1994, Dinghra, 2000).  Artemisinin content in was lowered in the 

presence of phytohormones compare to the hormone-free control flasks (Figures 4.8 and 4.9) 

suggesting that these hormones are in some way inhibitory to artemisinin production in hairy 

roots of A. annua clone YUT-16.  However, on a per liter basis, cultures grown in H16 

produced artemisinin levels similar to the B5 control flasks (Figure 4.10).   

Application of ethylene to A. annua hairy roots produced the lowest artemisinin 

accumulation, suggesting that terpenoid accumulation is inhibited by ethylene.  Roots 

cultured in NAA produced the highest levels of artemisinin suggesting that it is less 

inhibitory to production than the other phytohormones. Similarly, addition of  indole-3-

butyric acid (IBA) and NAA stimulated ajmalicine and ajmaline production compared to R. 

micrantha hairy roots cultured in hormone-free medium (Sudha et al. 2003). Also, coniferin 

production in L. flavum was significantly increased in the presence of auxin. Earlier work by 

Bunk (1997) suggested that in the presence of high levels of auxin, artemisinic compound 

yield is increased in A. annua hairy roots compared to hormone-free controls (data not 

shown).  This is consistent with my findings.  

Time of addition of phytohormones plays a crucial role in artemisinin production in 

bulk roots (Figure 4.9).  Addition of phytohormone combinations H16, H20 and H21, at day 

zero, inhibited both artemisinin production and growth compared to the controls.  Luo et al. 

(2001) also observed boosts in paclitaxel accumulation roughly 5 times that of the controls 

with the addition of phytohormones after 12 days growth of T. chinensus suspension cultures.  

 
 

62



It appears that both Taxus and Artemisia may have similar time dependent processes that 

respond to the presence of phytohormones.   

Artemisinin levels are stimulated by combination H16 (Figures 4.9 and 4.10).  Given 

the limited literature on combinatorial phytohormone treatments, I can only speculate that 

there might be less antagonistic hormone interplay with combination H16 than with either 

H20 or H21 as H16 resulted in overall artemisinin levels above both controls and levels 

similar to the 14 day medium B5 controls.  It is possible that roots grown in H20 and H21 

may require longer periods of incubation in order to observe a marked effect on either growth 

or artemisinin production. 

 

5.3. Medium Effects on Growth and Artemisinin Production  

B15 medium composition can either inhibit or stimulate root growth and artemisinin 

production depending upon inoculum size and length of culture (Tables 4.2 and 4.3 and 

Figures 4.2 and 4.9).  Growth increases in B15 medium compared to that in B5 are likely due 

to a higher amount of available carbon in the medium B15, 5% sucrose (Appendix A1).  The 

extra carbon appears to influence artemisinin production, but only after cultures increase 

their biomass (Figure 4.9).  Growth and development is governed by regulators and 

environmental cues that are themselves modulated and coordinated by the available carbon 

source (Koch, 1996; Sheen et al. 1999; Smeekens, 2000).   A wide variety of genes are 

known to be sugar regulated at the transcriptional level,  including genes involved in 

photosynthesis, carbon and nitrogen metabolism, response to stress, and secondary 

metabolism in different plant species (Rolland et al. 2002; Sheen et al. 1999; Smeekens, 

2000).  Consequently it is not unreasonable to consider that the extra carbon may be up or 
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down regulating transcription events late in growth (Figure 4.9) in the hairy roots of A. annua 

that led to the production of higher level of artemisinin.      

 

5.4 Hormone-to-Biomass Ratio Effects on Growth and Secondary Metabolism 

5.4.1. Growth 

In cultures with phytohormones provided at inoculation with one-tenth the original 

hormone concentrations, growth increased significantly compared to roots in which the 

original concentrations were used (Figure 4.3).  Roots cultured in one-tenth the concentration 

of H16, H20 and H21 displayed about a two-fold increase in biomass accumulation 

compared to their 1x counterparts. Figure 4.3 also shows the B15 control roots outperform 

either experimental condition (Figure 4.3).  It became apparent that not only the amount of 

biomass present at the time of phytohormone addition but also the amount of phytohormone 

added controls root development (Figure 4.3). When 14-day-old root cultures were supplied 

with ten times the original phytohormone concentrations used in experiments shown in Table 

1.1, growth was also inhibited compared to roots that were fed the original concentrations 

(Figure 4.4).  Consistent with Smith’s data (Table 1.1),   A. annua hairy root growth is 

suppressed upon addition of phytohomones, however, interestingly, when lower amount of 

phytohormones are present in the medium, the adverse growth effects are diluted.  Inhibition 

of growth was particularly high for roots grown in H16 10x.  Conversely, roots grown in H21 

showed no growth inhibition after the higher 10x concentration.  Most notable is the result 

showing that roots incubated with 1 x of H16, stimulated root biomass accumulation 12 

percent above the medium B15 controls (Figure 4.4).  Taken together these results show that 

there is, indeed, a significant ratio effect of hormones on growth.   
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In concert with previous data, more root growth should have occurred at lower 

hormone-to-biomass ratios than the higher ones. Roots cultured in H16 produced the highest 

levels of biomass when harvested after three days post inoculation.  Again, hormone 

interplay may be less antagonistic in H16 than in either H20 or H21. Another useful outcome 

was that three days was sufficient time to observe a hormone-dependent growth response for 

all combinations studied except in H21.  This suggests that the phytohormone concentrations 

in either H20 or H21 may be too weak to promote high levels of biomass. (Figures 4.3 and 

4.4).  It is clear that the phytohormone-to-root biomass ratio is crucial to growth of these 

cultures. 

Upon adding fresh nutrients in the form of adding fresh medium to cultures, both root 

growth and artemisinin levels were stimulated (Figures 4.5 and 4.13, respectively). Carbon 

status has been shown to regulate growth and development (Koch, 1996; Sheen et al. 1999; 

Smeekens, 2000). The replenished carbon source may set in motion a cascade of events that 

ultimately result in better growth and sugar regulated transcription events (Rolland et al. 

2002) that yield higher amounts of artemisinin. Again, roots cultured in fresh medium in the 

presence of H16 produced the highest artemisinin yields. The provision of fresh medium had 

an adverse affect on roots grown in the presence of H21, as evidenced by the relatively low 

amount of biomass. This suggests that the concentrations of phytohormones found in H21 

inhibit growth regardless of the ratio.  All the data suggest that the provision of fresh 

nutrients stimulates both growth and artemisinin production.  It also became apparent that 

only the data from roots grown in the presence of H16 should be explored further.  
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5.4.2 Artemisinin Production 

A similar response to that observed for growth was also found for artemisinin 

production.  Artemisinin yields were higher when the hormone to biomass ratio was optimal. 

(Figures 4.11, and 4.12).  For example, the addition of phytohormones at day 0 at one-tenth 

the original hormone concentrations, significantly increased artemisinin production when 

compared to roots in which the original concentrations were used (Figure 4.11). Also, roots 

cultured in one-tenth the concentrations of H16 and H20 displayed a two-fold increase in 

artemisinin.  Curiously, roots cultured in H21 produced almost comparable levels of 

artemisinin at both hormone-to-biomass ratios (Figure 4.11) It would seem that here the ratio 

does not matter.  Or perhaps that H21 is not stimulatory to artemisinin production when 

considering the fact that it failed to elicit a favorable response in previous experiments 

(Figure 4.11).   

Roots fed the two ratios of hormones-to-biomass at day 14, showed similar responses. 

Consistent with data in Figure 4.11, roots given higher concentrations of phytohormones, ten 

times the original concentrations, displayed significant artemisinin decreases when compared 

to roots grown in the original 1x concentrations (Figure 4.12).  Moreover, roots cultured in 

ten time the concentrations of H16, H20 and H21 produced about half the artemisinin their 

1x counterparts did.   In contrast, roots incubated in the original concentration of H16, had 

artemisinin levels double that observed in B15 controls. Also H20 and H21 produced low 

levels of artemisinin. All the evidence seems to suggest that H20 and H21 may not be 

stimulatory to artemisinin production under these conditions.  Roots grown in both ratios of 

combination 16 yielded concentrations of artemisinin that were higher than those produced in 

roots cultured in medium B15 (Figure 4.12).  Still roots grown in medium B5 produced as 

 
 

66



much artemisinin as did the roots grown in H16 (Figures 4.11 and 4.12).  It was evident that 

inoculum size coupled with lower biomass to hormone ratios did not significantly increase 

artemisinin yields beyond B5 controls. 

In concert with the data in Figure 4.3, and 4.4, these data show that the hormone-to-

biomass ratio has a strong influence on both growth and artemisinin production for roots 

inoculated at day zero and at day 14.  The roots that were provided with hormones on day 14 

were not subjected to the stress of culture manipulation, only the addition of fresh media.    

  

5.5 Mechanical Manipulation and Subculture Effects 

5.5.1 Growth 

Upon adding fresh medium to cultures, root growth was stimulated in cultures grown 

in H16 and H20 (compare Figure 4.5 and 4.4) with, roots cultured in fresh medium in the 

presence of H16 producing the highest levels of biomass (Figure 4.5). Addition of fresh 

nutrients had no effect, stimulatory or inhibitory, on root growth in H21 cultures.  Perhaps, 

three days post inoculation, the roots may be in a lag phase trying to adjust to the 

phytohormones.  All cultures fed phytohormones H16, H20 and H21 produced dense callus 

tissue suspension cells to some degree. While disorganization of the root matrix was not a 

characteristic studied, this parameter may explain artemisinin and growth decreases.  Bais et 

al., (2001) showed that the hairy roots of C. intybus in the presense of cytokinins and auxins, 

rapidly undergo disorganization of the root matrix ultimately yielding suspension cultures. 

While obvious in cultures fed phytohormones at day 0, the appearance of free cells in the 

surrounding medium was not as evident in cultures provided phytohormones at day 14.  

Perhaps the degree of this phyto-physiological occurrence relative to the amount of 
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phytohormone exposure (i.e. time of addition) may explain variances in root growth in A. 

annua hairy root cultures. 

 Also, while roots fed 1x H16 and fresh medium significantly increased biomass 

levels over the B5 and B15 controls, the hormone-to-biomass ratio effect evident in earlier 

experiments (Figures 4.3 and 4.4) was heavily diluted (Figure 4.5).  There appeared to be no 

statistical difference between roots fed either 1x or 10x the concentrations in H16. It may be 

that all the roots were experiencing a lag in growth, and the phytohormones in H16 are 

facilitating faster recovery from the stress of subculture (Figure 4.5). 

Interestingly, in Figure 4.6, when roots were chopped and then grown in fresh 

medium, they did not significantly increase in mass unless hormones are also present (Figure 

4.6). When analyzing the results of mechanical manipulation (i.e. subculture, chopping or 

transferring) of the root cultures in concert with the provision of fresh medium, the 

combination of these techniques stimulated root growth above either lone procedure  (Figure 

4.6).  The lowest levels of biomass occurred in the absence of subculture and fresh medium.  

Surprisingly, chopping of the roots did not effect the roots adversely.  According to previous 

work in our lab (data not shown), A. annua hairy roots undergo a lag period following 

subculture.  Perhaps the addition of fresh medium and the phytohormones concentrations in 

H16 together facilitate exponential growth regardless of wounding.  There seems to be a 

fresh medium effect on growth. 

 

5.5.2 Artemisinin Production  

When fresh medium was added to the dense root cultures, artemisinin levels were 

stimulated (Figures 4.13). Roots cultured in fresh medium in the presence of H16 produced 
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the highest artemisinin yields overall.  Interestingly, roots fed H16 1x and fresh medium 

significantly increased biomass levels over the B5 and B15 controls as well as roots fed H20 

and H21.  The hormone-to-biomass ratio effect evident in earlier experiments (Figures 4.11 

and 4.12) remained consistent.  

Mechanical manipulation (i.e. subculture, chopping or transferring) of the root cultures 

stimulated artemisinin production (Figure 4.14).  The lowest levels of artemisinin production 

occurred in the absence of both subculture and fresh medium.  Further, when cultures were 

both subcultured and provided with fresh medium along with H16, artemisinin levels were 

stimulate to the highest levels (Figure 4.14).  The increased stimulation of artemisinin with 

fresh medium and then mechanical manipulation is additive (Figure 4.14). 

  ABA induces gene transcription (Crozier et al. 2000) in response to wounding. 

Perhaps in cultures fed H16, the concentrations of phytohormones favorably interact with 

endogenous hormone levels, potentially intiatiating a similar mechanism of ABA induced 

gene transcription, that results in more artemisinin production.   Or perhaps there exists a 

more efficient sugar regulated pathway for the production of secondary metabolites, 

specifically artemisinin in hairy roots of A. annua. Alternatively, the production or lack 

thereof the suspension cells and callus tissues in these cultures may also be contributing 

factors. After 14 days A, annua hairy roots begin to form callus tissue regardless of hormone 

addition. Since secondary products are typically produced in differentiated tissues conversion 

of these tissues to callus could result in diminished artemisinin production..  If the 

phytohormone concentrations in H16 inhibit callus formation in the roots, this may explain 

why roots fed H16 in Figure 4.14 produced higher levels of artemisinin compared to B15 

controls.   
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5.6. Determination of Conditions for Maximum Biomass and Artemisinin 
Production 

 

The length of phytohormone incubation time required for maximum growth and 

artemisinin production using H16 coupled with provision of fresh medium and mechanical 

manipulation was not determined (Figures 4.7 and 4.15). However, at six days post- 

inoculation both root growth and artemisinin levels seemed to be steadily increasing.  Due to 

time constraints, analysis longer than six days were not run.  It is clear, however, that both 

growth and artemisinin production peak somewhere beyond three days post inoculation.    
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CHAPTER 6 
 
CONCLUSIONS AND FUTURE RESEARCH 
 
 
6.1 Summary and Conclusions 

In summary, herein lies the first experimental evidence that hairy roots of A. annua 

can produce elevated biomass and artemisinin levels using a two-stage culture system 

incorporating the use of multiple phytohormones (e.g. NAA, GA3, Ethephon, and ABA) in 

combination with subculturing methods.  Single and bulk root growth responded best to 

decreasing hormone concentrations.    However, in terms of artemisinin roots grown in 

gibberellic acid, ABA and IAA produced the highest root growth characteristic values. Roots 

supplied with the synthetic auxin, not only outperformed natural IAA, but all other 

phytohormones in this study.  Roots supplied with ABA produced the highest levels of root 

biomass.  Time of addition played an important role in root biomass accumulation and 

artemisinin yield. There seemed be a hormone-to-biomass ratio effect, suggesting an optimal 

range of specific hormone concentrations favorable to both growth and artemisinin 

production. Also, the provision of fresh medium and physical manipulation stimulated both 

root growth and artemisinin production. Fresh medium and physical manipulation seemed to 

act additively in stimulating both growth and artemisinin production. Lastly, maximum 

artemisinin production and root growth occurs sometime beyond three days incubation in 

H16 medium.   
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6.2  Future Research 

Future work involving this production scheme might involve studies to uncover the 

peak of artemisinin production as well as to define critical concentration ranges for the 

maximum root biomass as well as artemisinin yield via another fractional factorial analysis.  

It would also be useful to run this two-stage process using the individual hormones.  

Pronounced effects on growth and artemisinin production over the hormone-free controls and 

the combinatorial hormone data would suggest hormone-hormone antagonism.  These studies 

would allow for the rapid and effective process design for future experiments. 

Also, Sa et al. (2000) observed increased endogenous levels of the cytokinins 

isopentenyl adenine (iPA), not BAP.  Further experiments using natural exogenous 

cytokinins that are found in A. annua, especially iPA, should be run before one can preclude 

the effects of cytokinins on hairy roots of A. annua.   

Disorganization index studies should also be run on each culture provided with 

phytohormones. The level of disorganization in each combination may begin to explain the 

differences observed between H16, H20 and H21 with respect to growth and artemisinin 

production.   

Lastly, experiments using brassinosteroids might prove useful considering that Wang 

et al. (2003) demonstrated a 57% increase in artemisin yields over brassinosteroid-free 

cultures of A. annua hairy roots, in the presence a synthetic steroidal lactone, (22S,23S)-

homobrassinolide (SSHB).    
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APPENDIX A1 
 
B5 Stock Solution Preparation:                                                               B15 Modification                            
       
     Stock Name                          Concentration                    Use:                         Use: 
  1. 1.01 M (NH4)2SO4   134    g/l                  1ml/l                        1ml/l 
  2. 0.048 M H3BO3         3        g/l                   1ml/l                        1ml/l 
  3. 1.02 M CaCl2·2H2O    150    g/l                 1ml/l                        1ml/l 
  4. 0.1 mM CoCl2·6H2O                0.025 g/l               1ml/l                        1ml/l    
  5. 0.1 mM CuSO4·5H2O                 0.025 g/l              1ml/l                        1ml/l 
  6. 1.01 M MgSO4·7H2O                   250    g/l               1ml/l                        1ml/l 
  7. 0.059 MnSO4·H2O                       10      g/l                  1ml/l                        1ml/l 
  8. 4.5 mM KI                                  0.750 g/l              1ml/l                        1ml/l 
  9. 0.11 M Na2EDTA                        37.3   g/l              1ml/l                        1ml/l 
10. 1.03 mMNa2MoO4·2H2O            0.25   g/l              1ml/l                        1ml/l  
11. 1.08 M NaH2PO4·2H2O               150    g/l              1ml/l                 0.924ml/l 
12. 6.9 mM ZnSO4·7H2O                   2        g/l                1ml/l                        1ml/l 
13. 0.055 M I-Inositol                       9.91   g/l                    10ml/l                      10ml/l 
14. 0.03 Thiamine                             10      g/l            1ml/l                    1ml/l 
15. 4.86 mM Pyridoxine                   1        g/l             1ml/1                    1ml/l  
16. 8 mM Nicotinic Acid                    1        g/l            1ml/l                       1ml/l 
17. 0.1 FeSO4·7H2O                            27.8   g/l         1ml/l                 1ml/l 
18. 2.47 M KNO3                                 249.7 g/l               10ml/l                        6ml/l 
 
Surcose:                                                                                 30 g/l                         50g/l 
 
pH:                                                                                           5.7                            5.7 
 
Modifications in inorganic phosphate and nitrogen content as well as the sucrose level are 
taken from Hemmavahn, (1995). 
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APPENDIX A2 
 
 
Sterilization Procedure for six-well plates: 
 
For: Multiwell ™ Primaria ™ 6 well plates, Becton Dickinson ®. 
 

1. Plates can be thoroughly washed with soap (7x brand ) and water (Wash each 
individual well and the cover. Rinse thoroughly.  

2. Air dry. 
3. Once dry, the plates can be modestly rinsed with 70% ethanol only, never acetone. 
4. Air dry with lid securely on in a hood 
5. Microwave for and not exceed 3* minutes on high heat in a commercial microwave; 

microwave plates individually, for best results, with lid in place.  
 
Note: The plate is now sterile for up to one day if sterile environment is not disturbed. 

 
     *   When heating several plates exercise caution.  Energy trapped in the microwave from                          

consistent use can cause losses in plate structural integrity. This also occurs after 3 
minutes has elapsed.  To avoid structural damage allow two minutes between each 
sterilization attempt. Extreme plate temperatures are not required for sterilization, 
thus one should be able to handle the plate after each attempt.   
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