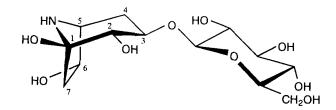


S0040-4039(96)00496-0

The Isolation from *Nicandra physalodes* and Identification of the 3-O- β -Dglucopyranoside of 1α , 2β , 3α , 6α -tetrahydroxy-*nor*-tropane (Calystegine B₁).

Rhodri C Griffiths^a, Alison A Watson^b, Haruhisa Kizu^c, Naoki Asano^c, Hazel J Sharp^b, M. George Jones^a, Mark R. Wormald^d, George W. J. Fleet^c and Robert J Nash^{b^a}

^aInstitute of Biological Sciences, University of Wales, Aberystwyth, Dyfed SY23 1DB, UK ^bInstitute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Dyfed SY23 3EB, UK ^cFaculty of Pharmaceutical Sciences, Hokuriku University, Kanagawa-machi, Kanazawa 920-11, Japan. ^dGlycobiology Institute, Biochemistry Department, South Parks Road, Oxford OX1 3QU, UK ^cDyson Perrins Laboratory, South Parks Road, Oxford, OX1 3QY, UK


Abstract: The isolation and identification of 3-O- β -D-glucopyranosyl-1 α ,2 β ,3 α ,6 α -tetrahydroxy-nortropane from Nicandra physalodes Boehm. fruits (Solanaceae) is reported. Copyright © 1996 Elsevier Science Ltd

Polyhydroxylated mono- and bicyclic nitrogen heterocycles are an important class of glycosidase inhibitors¹. Polyhydroxy-nor-tropane alkaloids are the most recent naturally-occurring class of these inhibitors to be discovered and they have been shown to be potent inhibitors of β -glucosidases and β -galactosidases². These alkaloids were first found in bindweeds³ (Convolvulaceae) and given the trivial name calystegines but have since been found in human foods such as potato tubers (*Solanum tuberosum*) and aubergine fruits (*Solanum melongena*)⁴. Calystegines are clearly widespread and their significance in the human diet remains to be explored. We now report the first isolation and identification of a glucoside of a calystegine.

Nicandra physalodes Boehm. (Solanaceae) fruits (230g fresh weight) were homogenised in 70% aqueous ethanol. The filtrate was applied to the cation exchange resin Dowex 50W-X2 (H⁺ form) and the bound compounds displaced with 2M ammonia solution. The tropane alkaloid calystegine B₁ ($1\alpha, 2\beta, 3\alpha, 6\alpha$ -tetrahydroxy-nor-tropane) and a glycoside of it were determined to be the major alkaloids present by GC-MS of the trimethysilyl-derivatives. The alkaloids were readily separated from amino acids in the extracted material by ion exchange chromatography using Amberlite CG120 (NH₄⁺ form) with the glycoside displaced with 2M pyridine and the aglycone eluted before arginine with 0.1M ammonia solution. The glycoside was then purified on the anion exchange resin Dowex 1-X2 (OH form) and washed off with water (yield 2.1mg).

The structure of the glycoside was determined to be 3-O- β -D-glucopyranosylcalystegine B₁ 1 on the basis of ¹H and ¹³C NMR data, including 2D HMQC and HMBC spectral data⁵. The complete carbon and hydrogen atom connectivity of both the aglycone and glycone was defined. From comparison with previously reported NMR data^{2,6}, the aglycone was identified as calystegine B₁. The large vicinal J values of the glycone H-2', H-3', and H-4' and coupling constant of the anomeric proton (H-1', δ 4.50, $J_{1',2'} = 7.8$ Hz) indicate that the glycone part of this glycoside is the pyranose form of β -glucose. It was shown that D-glucose is contained in the filtrate after acid hydrolysis of this glycoside using Dowex 50W-X2 (H⁺) resin by the D-glucose-oxidase peroxidase method. The aglycone part was eluted with 0.5M ammonia solution from the resin, concentrated to dryness, and confirmed as calystegine B₁ by GC-MS of the trimethylsilylated eluate. The HMBC spectrum showed a correlation peak between the anomeric proton

of the glucone and the aglycone C-3 carbon, defining the linkage site. The ¹³C-NMR data for the calystegine component shows a 7.6 ppm downfield shift for C-3 and 2.0 and 2.7 ppm upfield shifts for C-2 and C-4 respectively, compared to the free calystegine, also consistent with a 3-O- linkage.

3-O- β -D-glucopyranosyl-(calystegine B₁) 1

3-*O*-β-*D*-*G*lucopyranosylcalystegine *B*₁: ¹H-NMR (400 MHz, D₂O); δ: 1.40 (m, 1H, H-7exo); 1.49 (ddd, 1H, J_{3,4ax}=10.7, J_{4ax,4eq}=13.4, J_{4ax,5}=3.9Hz, H-4ax); 2.19 (ddd, 1H, J_{3,4eq}=6.4, J_{4ax,4eq}=13.4, J_{4eq,5}=2.7 Hz, H-4eq); 2.53 (dd, 1H, J_{6,7endo}=7.3, J_{7endo,7exo}=14.4 Hz, H-7endo); 3.26 (dd, 1H, J_{1',2}=7.8, J_{2',3}=9.5 Hz, H-2'); 3.29 (m, 1H, H-5); 3.37 (dd, 1H, J_{3',4}=9.0, J_{4',5}=9.8 Hz, H-4'); 3.44 (ddd, 1H, J_{4',5}=9.8, J_{5,6'a}=6.1, J_{5,6'b}=2.2 Hz, H-5'); 3.45 (dd, 1H, J_{2,3}=8.5, J_{2,7exo}=1.7 Hz, H-2); 3.47 (t, 1H, J_{2',3}=J_{3',4}=9.0 Hz, H-3'); 3.63 (ddd, 1H, J_{2,3}=8.5, J_{3,4ax}=10.7, J_{3,4eq}=6.4 Hz, H-3); 3.70 (dd, 1H, J_{5,6'a}=6.1, J_{6'a,6'b}=12.2 Hz, H-6'a); 3.92 (dd, 1H, J_{5,6'b}=2.2, J_{6'a,6'b}=12.2 HZ, H-6'b); 4.09 (dd, 1H, J_{6,7endo}=7.3, J_{6,7exo}=2.7 Hz, H-6); 4.50 (d, 1H, J_{1',2}=7.8 Hz, H-1'); ¹³C-NMR (100 MHz, D₂O); δ: 36.2 (C-4); 43.5 (C-7); 62.7 (C-5); 63.6 (C-6'); 72.5 (C-4'); 75.7 (C-6); 75.8 (C-2'); 78.4 (C-3'); 78.7 (C-5'); 79.3 (C-2); 80.3 (C-3); 93.7 (C-1), 102.9 (C-1'). HRFAB-MS⁷ m/z 338.1446 [M + H] (C₁₃H₂₄O₉N requires 338.1451) measured on a Jeol JMS-SX 102A spectrometer with glycerol matrix⁸.

REFERENCES.

- 1. Fleet, G., Winchester, B. Glycobiology 1992, 2, 199-210.
- 2. Asano, N., Kato, A., Oseki, K., Kizu, H., Matsui, K. Eur. J. Biochem. 1995, 229, 369-376.
- Tepfer, D., Goldmann, A., Pamboukdjian, N., Maille, M., Lepingle, A., Chevalier, D., Denarie, J. Rosenberg, C. J. Bacteriol. 1988, 170, 1153-1161.
- Nash, R., Rothschild, M., Porter, E., Watson, A., Waigh, R., Waterman, P. Phytochemistry 1993, 34, 1281-1283.
- 5. NMR abbreviations: HMQC, heteronuclear multiple quantum correlation spectroscopy; HMBC, heteronuclear multiple bond correlation spectroscopy.
- Goldmann, A., Milat, M.L., Ducrot, P.H., Lallemand, J.Y., Maille, M., Lepingle, A., Charpin, I. Tepfer, D. Phytochemistry 1990, 29, 2125-2127.
- 7. MS abbreviations: HR, high resolution; FAB, fast atom bombardment.
- 8. This work was partly funded by a BBSRC grant to RCG.

(Received in UK 4 March 1996; accepted 14 March 1996)