stants relative to cyclohexanecarboxylic acid are given in Table I.
Department of Chemistry
Illinois Institute of Technology
Chicago, Illinois

The Dehydration of 4-Hydroxy-2,2,4,5,5-pentamethyltetrahydrofuran (Acetylene Studies, Part VI) ${ }^{1}$

By Max Sulzbacher and Ernst D. Bergmann Received January 26, 1953

When II, the product of the reaction between 4-keto-2,2,5,5-tetramethyltetrahydrofuran (I) and methylmagnesium iodide, is dehydrated, a compound of the expected composition $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}$ is obtained. Apart from the normal formulas, III, IV, the structure V is possible for this compound. Indeed, V has been proposed by Bouveault and Locquin, ${ }^{2}$ as the same substance is also formed by acid dehydration of $2,3,5$-trimethylhexane-2,3,5triol (VI).

The infrared spectrum of the dehydration product is compatible only with formula V. Whilst it does not show any sign of double bond absorption in the $1620-1700 \mathrm{~cm} .^{-1}$ region, the following bands were observed: $980 \mathrm{~cm} .^{-1}$ (optical density $d=$ 0.6) cyclobutane $^{3} ; 1099 \mathrm{~cm} .^{-1}(d=0.3)$ isopropyl; $1175 \mathrm{~cm} .^{-1}(d=0.8)$ superposition of the isopropyl and the tetrahydrofuran absorption. ${ }^{4}$ The chemical properties of the compound $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}$ are in accord with formula V. It could not be hydrogenatgd catalytically to $2,2,4,5,5$-pentamethyltetrahydrofuran at ordinary temperature and pressure, and did not decolorize bromine in carbon tetrachloride.

II

Experimental

I was prepared in quantitative yield from 1,1,4,4-tetra-

[^0]methyl-2-butyne-1,4-diol and aqueous mercuric sulfate, ${ }^{5-7}$ b.p. 150° (760 mm .).

4-Hydroxy-2,2,4,5,5-pentamethyltetrahydrofuran (II).The reaction of I with 2 moles of methylmagnesium iodide ${ }^{6}$ gave II in 63% yield; from diisopropyl ether, m.p. $77^{\circ} .^{8}$
Dehydration to V.-The mixture of 80 g . of II and 100 g . of freshly fused and finely ground potassium hydrogen sulfate was heated for six hours at 120°. The liquid product was distilled directly, dried and fractionated; b.p. 132°, yield $68 \mathrm{~g} .\left(96 \%\right.$), $d^{27.5} 0.820$ (literature 0.826).
Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 77.1 ; \mathrm{H}, 11.4$. Found: C, $77.0 ; \mathrm{H}, 11.5$.

The infrared spectrum was measured in the 950-1200 $\mathrm{cm} .^{-1}$ region in carbon disulfide solution (0.015 g . plus 1 cc. of solvent), in the $1600-1700 \mathrm{~cm}^{-1}$ region in carbon tetrachloride (0.016 g. plus 1 cc . of solvent); cell thickness $0.5 \mathrm{~mm} .{ }^{9}$
(5) G. Dupont, Compl. rend., 152, 1486 (1911).
(6) G. Dupont, Ann. chim., [8] 30, 536 (1913).
(7) H. Richet, ibid., [12] 8, 317 (1948).
(8) G. Dupont, Compt. rend., 154, 601 (1912).
(9) We are greatly indebted to Dr. S. Pinchas, Optics Department, Weizmann Institute of Science, Rehovoth, for the determination of the spectrum.
Grosvenor Laboratory
London, S.W. 1, England
Laboratories of the Scientific Department
Ministry of Defence
Tel-Aviv, Israel

cis- and trans-Tropine (Tropanol) ${ }^{1}$

By Pierre F. Smith ${ }^{2}$ and Walter H. Hartung ${ }^{3}$ Received March 5, 1953

Recent papers establish the stereochemical structure of the tropine (tropanol) isomers, ${ }^{4-6}$ namely, that in tropine the hydroxyl group and N -methyl bridge are trans and that in ψ-tropine they are cis. We now submit additional experimental evidence confirming these conclusions.

A study of models suggested that the structure with the -OH and $/ \mathrm{NCH}_{3}$ groups in close proximity might be expected, owing perhaps to hydrogen bonding, to exhibit greater $p K$ values in aqueous solution and less change in pH upon titration. Our results, obtained from the titration of $20.00-\mathrm{ml}$. portions of 0.050 N solutions of the isomeric tropines (purified by sublimation in vacuo) with 0.0613 N hydrochloric acid, are summarized in Fig. 1. The $p K$ values at 25°, as estimated from the half neutralization points, are 2.98 for tropine and 3.67 for ψ-tropine. The greater value for ψ-tropine is suggestive of intramolecular hydrogen bonding and therefore a configuration of the -OH cis to the , NCH_{3} group.

Tropine, refluxed for ten minutes with benzoyl chloride in a $1: 8$ molar ratio, yielded 84.5% of tropine benzoate hydrochloride. ψ-Tropine, identically treated, yielded 79.2% of ψ-tropine benzoate hydrochloride. Regrettably limited amounts of materials did not permit further study of the reactivity of the -OH groups in the isomeric alcohols.
(1) Experimental work performed at the University of Maryland.
(2) Rutgers University, Newark, N. J.
(3) University of North Carolina, Chapel Hill, N. C.
(4) G. Fodor and K. Nador, Nature, 169, 462 (1952).
(5) B. L. Zenitz, C. M. Martini, M. Priznar and F. C. Nachod, This Journal, 74, 5564 (1952).
(6) A. Nickon and Li F. Fieser, ibid, 74, 5566 (1952).

Fig. 1.-Titration curves of tropanol (Δ and solid line) and pseudotropanol (O and dashed line).

It was hoped that the rule of v. Auwers ${ }^{7}$ might be applied, although tridimensional models of the molecules reveal that the reference point for cistrans definition is not clear. The densities obtained for liquid tropine and ψ-tropine are $d^{116}{ }_{20}$ 1.001 and $d^{116}{ }_{20} 0.998$.

In this connection it may be pointed out that in scopine, I, the basic moiety of hyoscine (scopolamine), the -OH group at position 3 is most probably trans to the NCH_{3} bridge, since that configuration best explains the easy rearrangement to scopoline, II. Hyoscine frequently occurs together with atropine in various Atropa and Datura species, ${ }^{8}$ suggesting similar stereo-biochemical genesis for the two alkaloids.

(7) K. v. Auwers, Ann., 410, 287 (1915); 420, 84 (1920).
(8) T. A. Henry, "The Plant Alkaloids," The Blakiston Co., Philadelphis, Pa., 1949, p. 65.
Rutgers University
Newark, New Jersey
University of North Carolina
Chapel Hill, North Carolina

Simultaneous Dissociation of Two Protons. The Acid-Base Equilibria of Porphyrins ${ }^{1}$

By Robert Irving Walter ${ }^{2}$
Received Febrtary 19, 1953

The four nitrogen atoms of the porphyrin ring system can participate in a series of acid-base equilibria which can be written $\left(\mathrm{PH}_{2}\right.$ is the neutral porphyrin molecule)

$$
\begin{gather*}
\mathrm{PH}_{4}++ \tag{1}\\
\mathrm{PH}_{3}+\longrightarrow \mathrm{PH}_{3}^{+}+\mathrm{H}^{+} \tag{2}\\
\mathrm{PH}_{2}+\mathrm{H}^{+}
\end{gather*}
$$

[^1]\[

$$
\begin{align*}
& \mathrm{PH}_{2} \longleftrightarrow \mathrm{PH}^{-}+\mathrm{H}^{+} \tag{3}\\
& \mathrm{PH}^{-} \longleftrightarrow \mathrm{P}^{-=}+\mathrm{H}^{+} \tag{4}
\end{align*}
$$
\]

A potentiometric study of equilibria (1) and (2) was reported by Conant, et al., ${ }^{3}$ who observed only a single inflection in the titration curve for the addition of two equivalents of acid to PH_{2}. They assumed $p K_{1}=p K_{2}$, and reported values averaging 2.5 for five porphyrins in glacial acetic acid. A colorimetric study of equilibria (1) and (2) was reported by Aronoff and co-workers, ${ }^{4}$ who found only one absorption curve for each of three porphyrins in various sulfuric acid-pyridine mixtures. From the absence of a spectrum intermediate between those of $\mathrm{PH}_{4}{ }^{++}$and PH_{2}, they concluded that $\mathrm{PH}_{3}+$ could exist over only a limited $p \mathrm{H}$ range, and assumed that K_{1} and K_{2} were very nearly equal.

Equilibria (3) and (4) have been studied colorimetrically by McEwen, ${ }^{5}$ who found that no difference in acid strength could be detected for the first and second ionization steps of PH_{2}. He assigned $p K_{3}=p K_{4}=16$ for both steps of the ionization of etioporphyrin in methanol.

The authors quoted ${ }^{3-5}$ apparently intended to express the conclusions that reactions (1) and (2) occur with equal ease and, similarly, that reactions (3) and (4) occur with equal ease. If this is the case, it is not true that $K_{1}=K_{2}$ and $K_{3}=K_{4}$. Instead, due to statistical factors arising in the conventional definition of the dissociation constants, $K_{1}=4 K_{2}$ and $K_{3}=4 K_{4}{ }^{6}$ (if $\mathrm{PH}_{4}{ }^{++}$and PH_{2} be assumed to dissociate as independent dibasic acids). In such a reaction, the intermediate ($\mathrm{PH}_{3}{ }^{+}$or PH^{-}) would attain a maximum concentration, when the reaction was half completed, equal to half that of the total porphyrin present.

These results on a number of different porphyrins in a variety of solvents are not strictly comparable, but they suggest an unusual situation in which a tetrabasic acid loses two protons more or less simultaneously in each of two widely separated stages on the $p K$ scale. Accordingly, equilibria (1) and (2) have been investigated in an effort to detect the presence of $\mathrm{PH}_{3}{ }^{+}$. The water soluble porphyrin chosen for study was the dipotassium salt of $1,3,5,8$-tetramethylporphyrin-6,7-dipropionic acid methyl ester- 2,4 -disulfonic acid

The formula given is thus the species PH_{2}.
(3) J. B. Conant, B. F. Chow and E. M. Dietz, This Journal, 56, 2185 (1934).
(4) (a) S. Aronoff and C. A. Weast, J. Org. Chem., 6, 550 (1941);
(b) S. Aronoff and M. Calvin, ibid., 8, 205 (1943).
(5) W. K. McEwen, This Journas, 58, 1124 (1936).
(6) J. Greenspan, Chem, Revs., 12, 339 (1933).

[^0]: (1) Part I: This Journal, 73, 4013 (1951); Part II-V, J. Applied Chem., 8, 39, 42, 97, 145 (1953).
 (2) L. Bouveault and R. Locquin, Ann. chim,. [8] 21, 414 (1810).
 (3) L. W. Marrison, J. Chem. Soc., 1614 (1951).
 (4) H. Tschamiler and H. Voetter, Monatsh., 88, 302 (1952). See also G. M. Barrow and S. Searles, This Journal, 75, 1175 (1953).

[^1]: (1) This material was presented before the Organic Section at the 119th meeting of the American Chemical Society. Cleveland, April, 1951.
 (2) School of Chemistry, Rutgers University, New Brunswick, New Jersey.

