Recent Contributions of Kolbe Electrolysis to Organic Synthesis

Hans-Jürgen Schäfer

Organisch-Chemisches Institut der Universität, Corrensstraße 40, D-4400 Münster, FRG

1	Introduction and Historical Background		. 92
2	Reaction Conditions for Kolbe-Electrolysis	•	. 93
3	Mechanism of Kolbe-Electrolysis	٠	. 96
4	Symmetrical Coupling of Carboxylic Acids		. 99
5	Cross-Coupling of Different Carboxylates		. 104
6	Addition of Kolbe-Radicals to Double Bonds		. 110
7	Non-Kolbe Electrolysis to Carbenium Ions as Intermediates	•	. 115
8	Non-Kolbe Electrolysis of Carboxylic Acids to Ethers, Esters and Alcohols		. 117
9	Non-Kolbe Electrolysis of Carboxylic Acids to Acetamides		. 124
10	Conversion of Carboxylic Acids into Olefins by Non-Kolbe Electrolysis .	•	. 126
11	Rearrangement of Intermediate Carbocations in Non-Kolbe Electrolysis .	•	. 133
12	Fragmentation of Carboxylic Acids by Non-Kolbe Electrolysis		. 137
13	The Pseudo-Kolbe Reaction	•	. 138
14	The Photo-Kolbe Reaction	•	. 140
15	Anodic Oxidation of Carboxylic Acids Without Decarboxylation	•	. 141
16	Conclusions		. 142
17	Acknowledgement	•	• 142
18			

Carboxylic acids can be decarboxylated by anodic oxidation to radicals (Kolbe-electrolysis) and/or carbocations (non-Kolbe electrolysis). The procedure and necessary equipment is simple, a scale-up easy, the choice of carboxylic acids wide, the selectivity towards radicals or carbocations can be controlled by reaction conditions and the structure of the carboxylic acid, the yields are in general good. The radical pathway can be used for the preparation of e.g. 1,*n*-diesters, pheromones, or rare fatty acids. Electrolysis in the presence of olefins affords additive dimers and monomers or by intramolecular addition five membered carbocycles and heterocycles. By non-Kolbe electrolysis carboxylic acids can be converted into ethers, acetals, olefins or acetamides. Rearrangements and fragmentations lead to stereospecifically substituted cyclopentanoids and one- or four-carbon ring extensions.

1 Introduction and Historical Background

Kolbe electrolysis is a powerful method of generating radicals for synthetic applications. These radicals can combine to symmetrical dimers (chap 4), to unsymmetrical coupling products (chap 5), or can be added to double bonds (chap 6) (Eq. 1, path a). The reaction is performed in the laboratory and in the technical scale. Depending on the reaction conditions (electrode material, pH of the electrolyte, current density, additives) and structural parameters of the carboxylates, the intermediate radical can be further oxidized to a carbocation (Eq. 1, path b). The cation can rearrange, undergo fragmentation and subsequently solvolyse or eliminate to products. This path is frequently called non-Kolbe electrolysis. In this way radical and carboniumion derived products can be obtained from a wide variety of carboxylic acids.

$$R - CO_{2}^{\Theta} \xrightarrow{-e}_{-CO_{2}}^{R} \cdot \underbrace{(a)}_{Y} R \xrightarrow{Y}_{R} R$$

$$(1)$$

$$R^{\Theta} \xrightarrow{R \oplus R} ester, ether, olefin, amide$$

Faraday, in 1834, was the first to encounter Kolbe-electrolysis, when he studied the electrolysis of an aqueous acetate solution [1]. However, it was Kolbe, in 1849, who recognized the reaction and applied it to the synthesis of a number of hydrocarbons [2]. Thereby the name of the reaction originated. Later on Wurtz demonstrated that unsymmetrical coupling products could be prepared by coelectrolysis of two different alkanoates [3]. Difficulties in the coupling of dicarboxylic acids were overcome by Crum-Brown and Walker, when they electrolysed the half esters of the diacids instead [4]. This way a simple route to useful long chain 1,n-dicarboxylic acids was developed. In some cases the Kolbe dimerization failed and alkenes, alcohols or esters became the main products. The formation of alcohols by anodic oxidation of carboxylates in water was called the Hofer-Moest reaction [5]. Further applications and limitations were afterwards found by Fichter [6]. Weedon extensively applied the Kolbe reaction to the synthesis of rare fatty acids and similar natural products [7]. Later on key features of the mechanism were worked out by Eberson [8] and Utley [9] from the point of view of organic chemists and by Conway [10] from the point of view of a physical chemist. In Germany [11], Russia [12], and Japan [13] Kolbe electrolysis of adipic halfesters has been scaled up to a technical process.

The large amount of literature in connexion with the Kolbe and non-Kolbe electrolysis is covered in a number of reviews [7, 10, 16, 17, 22, 23, 24, 26, 27] and chapters in books [6, 9, 14, 15, 18, 19, 20, 21, 25].

2 Reaction Conditions for Kolbe Electrolysis

The yield and selectivity of Kolbe electrolysis is determined by the reaction conditions and the structure of the carboxylate. The latter subject is treated in chaps 3, 4. Experimental factors that influence the outcome of the Kolbe electrolysis are the current density, the temperature, the pH, additives, the solvent, and the electrode material.

High current densities and high carboxylate concentrations favor the formation of dimers. This is due to a high radical concentration at the electrode surface that promotes dimerization. Furthermore, at high current densities the so called critical potential of about 2.4 V (vs NHE) is reached [28] above which Kolbe dimerization proceeds smoothly. At this potential in aqueous solution and nonaqueous solvents the oxygen evolution and solvent oxidation is effectively suppressed [10, 29, 30]. The critical potentials for different carboxylates have been compiled [29], they are in the order of 2.1 to 2.8 V (vs NHE), whereby the structure of the carboxylate and its critical potential do not obviously correlate. There is, however, no need for potential control in Kolbe electrolysis as the critical potential is already exceeded at 1 to 10 mA/cm^2 . This is much below the usually applied current density, which should be as high as possible, normally equal or greater than 250 mA/cm². It is assumed that at the critical potential the carboxylate forms a layer at the electrode surface, whereby the solvent is desorbed, whilst below the critical potential the solvent is preferentially oxidized.

In the anodic decarboxylation of phenylacetic acid benzaldehyde is the major product (80%) at low current density ($< 3.2 \text{ mA/cm}^2$). Its formation is supposed to occur by reaction of the intermediate benzyl radical with oxygen, which is possibly simultaneously generated at the anode [31].

A neutral, or even better a weakly acidic medium seems to be preferable for the Kolbe reaction. This is achieved by neutralizing the carboxylic acid to an extent of 2 to 5%, in some cases up to 30%, by an alkali metal hydroxide or alkoxide. The concentration of carboxylate remains constant during the electrolysis. When the carboxylate is consumed at the anode, base is continuously formed at the cathode and this way the carboxylate is regenerated from the acid. The endpoint of the electrolysis is indicated by a change of the electrolyte to an alkaline pH. This procedure is denoted as the salt-deficit method. The degree of neutralization can be as low as 0.5%. In spite of the low conductivity in this case, a low cell voltage can be maintained by a small electrodes [34, 35]. Sometimes it is necessary to convert the carboxylic acid totally into the carboxylate to improve its solubility in aqueous solution or to suppress discrimination in mixed Kolbe electrolysis due to different acidities of the carboxylic acids. In these cases a mercury cathode is used in the Dinh-Nguyen cell [36]. Here the electrolyte remains neutral, because alkali metals are discharged and bound as amalgams.

In aqueous solution an elevated pressure favors the Kolbe-coupling against non-Kolbe products [37]. A possible explanation is that high pressure aids the formation of a lipophilic medium at the electrode surface that prevents the adsorption of water and thus disfavours the formation of carbenium ions.

Temperature has some effect on Kolbe electrolysis. Higher temperatures seem to support disproportionation against the coupling reaction and intramolecular additions

to double bonds against a competing intermolecular coupling (chap 6). The unwanted conversion of the carboxylic acid into its methyl ester, that rivals to some extent with the decarboxylation, when methanol is used as solvent, can become the main reaction at higher temperatures, e.g. at about 65 $^{\circ}$ C with 11-bromcundecancate [38].

Additives can strongly influence the Kolbe-reaction. Foreign anions should be definitively excluded, because they seem to disturb the formation of the necessary carboxylate layer at the anode. Their negative effect increases with the charge of the anion. While fluoride or formate inhibit, in low concentration, only slightly the ethane formation in the electrolysis of acetate, sulfate hinders the Kolbe reaction totally at concentrations as low as 10^{-3} mol/l [39]; even more pronounced, is the effect of $Fe(CN)_6^{3-}$ [22, 40]. In the anodic decarboxylation of phenylacetate the dimerization can be totally supressed in favor of the non-Kolbe product, benzylmethylether, when the electrolyte is more than 5.18 mM in NaClO₄ [31]. The inhibition by Cl⁻, NO₃⁻, NCS⁻, Br⁻, I⁻ can be partially counteracted by the addition of cyclohexene or pyridine [41]. The inhibition is attributed to the competitive formation of complexes Pt.PtO-foreign anion_{ads} and Pt.PtO-(RCO₂⁻)_{ads}. The former complex does not inhibit the dehydrogenation of the solvent, e.g. MeOH to $H_2C=O$ and $C\equiv O$. Unsaturated hydrocarbons are effective, because they trap the halogen from the anode surface. The shift from the radical to the carbenium ion pathway by perchlorate can be explained as due to blocking part of the anode surface by perchlorate adsorption, which lowers the radical concentration at the electrode. This disfavours the bimolecular radical dimerization and aids a second electron transfer to form the carbenium ion.

Foreign cations can increasingly lower the yield in the order Fe^{2+} , $Co^{2+} < Ca^{2+} < Mn^{2+} < Pb^{2+}$ [22]. This is possibly due to the formation of oxide layers at the anode [42]. Alkali and alkaline earth metal ions, alkylammonium ions and also zinc or nickel cations do not effect the Kolbe reaction [40] and are therefore the counterions of choice in preparative applications. Methanol is the best suited solvent for Kolbe electrolysis [7, 43]. Its oxidation is extensively inhibited by the formation of the carboxylate layer. The following electrolytes with methanol as solvent have been used: MeOH-sodium carboxylate [44], MeOH-MeONa [45, 46], MeOH-NaOH [47], MeOH-Et₃N-pyridine [48]. The yield of the Kolbe dimer decreases in media that contain more than 4% water.

In aqueous solution especially, the current yield is distinctly lower; furthermore, solubility problems can occur when the salt-deficit method is used. In aqueous solution, α -amino- or α -phenyl substituted carboxylates lead mainly to decomposition products, whilst in dry methanol or methanol-pyridine, coupling products were obtained with α -phenyl- and α -acetylaminocarboxylates [49].

Dimethylformamide is also a suitable solvent [50], it has, however, the disadvantage of being oxidized at fairly low potentials to N-acyloxy-N-methyl formamide [51]. The influence of the composition of the ternary system water/methanol/dimethyl-formamide on the material and current yield has been systematically studied in the electrolysis of ω -acetoxy or -acetamido substituted carboxylates [32]. Acetonitrile can also be used, when some water is added [52]. The influence of various solvents on the ratio of Kolbe to non-Kolbe products is shown in Table 1 [53].

Other electrolytes, that have been used, are: dimethylsulfoxide-NaH [54], glycol methylether-water (3:7, v, v) [55] or acetic acid [22].

Solvent	Bicyclohexyl:Carbeniumion product
$H_2O-MeOH (30\% v/v)^c$	0.97
MeOH	1.76
MeCN ^d	2.26
HCONMe, ⁴	4.32

 Table 1. [53] Anodic decarboxylation^a of cyclohexanecarboxylic acid in different solvents

^a Acid (0.78 M), neutralized to 25%; Pt-anode, 0.25 A/cm²

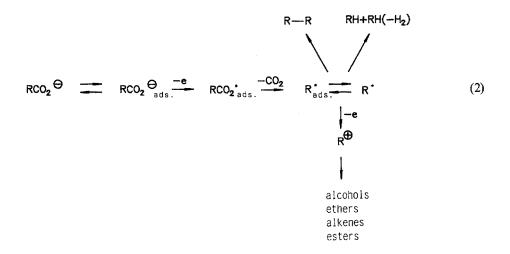
^b Alcohol, ester, ether and acetamide according to solvent

° Sodium salt

^d Tetrabutylammonium-salt

As anode material, smooth platinum in the form of a foil or net seems to be most universally applicable [32, 33]. In nonaqueous media, platinized titanium, gold, and nonporous graphite can also be used [56]. PbO_2 -, MnO_2 - or Fe_3O_4 -anodes do not lead to Kolbe-dimers [57], except for PbO₂ in acetic acid [58].

To keep the consumption of the valuable platinum low, thin foils have been glued to a graphite support [34] or thin-layers of platinum have been sputtered on to a glass base [59]. Platinum can be used in a particle electrode by plating silica gel with platinum [60], or in a solid polymer electrolyte where platinum is incorporated into a nafion ion exchange membrane [61].


Electrolysis of triethylammonium heptanoate gave, in protic solvents (MeOH, EtOH, H_2O), dodecane as major the product at vitreous carbon (24–53%) or baked carbon (30–39%), compared to 45–62% at platinum; with graphite as anode, esters (non-Kolbe products) were the major products. Additionally, large differences in the product ratios were found by using face or edge surfaces of pyrolytic graphite [48]. In acetonitrile, longer fatty acids form dimers also at graphite anodes. Is has been argued that this is possibly due to stacking of the alkyl chain at the electrode surface [52]. In acetonitrile, glassy carbon behaves like platinum in the anodic oxidation of acetate [62]. In non-aqueous media, ruthenium dioxide-titanium anodes have been successfully applied to Kolbe dimerizations [63].

The nature of the cathode material is not critical in the Kolbe reaction. The reduction of protons from the carboxylic acid is the main process, so that the electrolysis can normally be conducted in an undivided cell. For substrates with double or triple bonds, however, a platinum cathode should be avoided, as cathodic hydrogenation can occur there. A steel cathode should be used, instead.

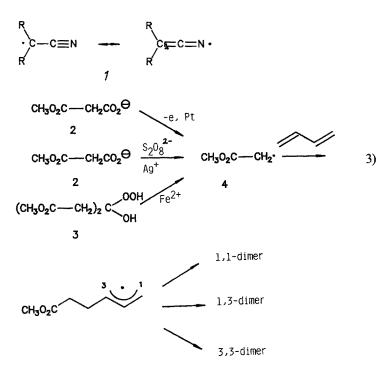
In summary the following general experimental conditions should be applied for a successful dimerization of carboxylic acids: An undivided beaker type cell can be used equipped with a smooth platinum anode and a platinum, steel or nickel cathode in close distance; a current density of 0.25 A/cm^2 or higher should be provided by a regulated power supply, a slightly acidic or neutral electrolyte, preferable methanol as solvent and a cooling device to maintain temperatures between 10 to 45 °C should be employed. With this simple procedure and equipment yields of coupling product as high as 90% can be obtained, provided the intermediate radical is not easily further oxidized (see chap 7).

3 Mechanism of Kolbe Electrolysis

In the 1930s, very different mechanisms for Kolbe electrolysis were proposed. The discharged ion or free-radical theory was suggested by Crum, Brown and Walker [64], it assumes acyloxy radicals as intermediates. This proposal comes closest to present mechanistic ideas. According to Glasstone's and Hickling's hydrogen peroxide theory [65], Kolbe dimers and Hofer-Moest products (alcohols, esters) are formed by the action of OH radicals and H_2O_2 . The acyl peroxide theory by Schall [66] and Fichter [6] proposes that the acyloxy radicals formed by discharge of the carboxylates couple to diacyl peroxides, that decompose. These early mechanistic ideas are covered in refs [67, 68]. More recent mechanistic concepts explain the experimental facts better. However, there is still some dispute between physical and organic chemists on some reaction steps. The recent mechanistic proposals have been critically discussed in refs. [8, 69–72] and from the physical chemists points of view in ref. [10]. The following general scheme is assumed (Eq. 2)

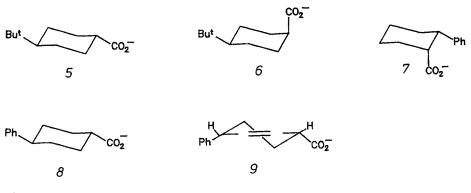
The competing pathways to radical or carbenium ion derived products are determined, apart from experimental factors (see chap. 2), by the ionization potential of the radical. From product ratios and ionization potentials of the intermediate radicals, the conclusion could be drawn that such radicals with ionization potentials above 8 eV lead preferentially to coupling products, whilst those with ionization potentials below 8 eV are further oxidized to carbenium ions [8c].

Pulsed current experiments of aqueous acetate solutions indicate that at least in aqueous solution a platinum oxide layer seems to be prerequisite for the decarboxylation to occur. Only at longer pulse durations (> 10^{-3} s) is ethane produced [73, 74]. These are times known to be necessary for the formation of an oxide film. At a shorter pulse length (< 10^{-4} s) acetate is completely oxidized to carbon dioxide and water possibly at a bare platinum surface [75]. The potentiodynamic response in the electrolysis of potassium acetate in aqueous solution also points to an oxide layer, whose average thickness is probably equivalent to three monolayers [76]. Other results, however, indicate that platinum oxides formed in the presence of water significantly inhibit the Kolbe reaction. This is assumed from a comparison of reaction rates in anhydrous and aqueous solutions [77] and the fact that the highest yield of dimers are usually obtained in nonaqueous media [78].


It has been shown by employing the radioactive tracer method with ¹⁴C-labeled carboxylic acids [79] and with rotating disc electrode experiments [80] that carbo-xylates are adsorbed at the anode surface.

Current potential curves exhibit a critical potential at 2.1 to 2.4 V versus NHE. Below this potential in aqueous solution, oxygen is formed preferentially [81], while above it the discharge of oxygen is inhibited and Kolbe dimers are obtained [81-82]. At this critical potential the coverage of the electrode with acetate increases sharply [83]. From an anomalous Tafel slope, from the decrease of the differential capacity in this voltage range [83] and from other electroanalytical data [84] it is deduced that above the critical potential a rigid layer of adsorbed acyloxy or alkyl radicals is formed on top of the metal [8c, 78] or metal oxide [68], which inhibits the oxygen evolution or solvent oxidation and promotes Kolbe electrolysis [8 a, b, 10, 76]. Recent results on the capacitative behaviour of sodium acetate in an aqueous acetic acid solution at platinum indicate that the double layer capacitance is due to adsorption of methyl radicals, while the coverage by acetate radicals is insignificant [85]. The different stages of oxide formation and adsorption of intermediates have been observed by modulated specular reflectance spectroscopy applied to the Kolbe reaction of ethyl malonate in aqueous solution [86]. By polaromicrotribometry is has been shown that at the critical potential a hydrophobic polymer film is formed that apparently inhibits the oxygen discharge [87].

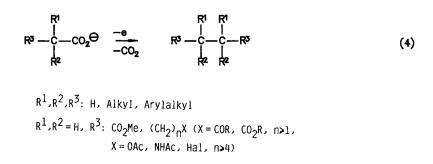
For the tetrabutylammonium salts of substituted acetate the quarter wave potentials have been determined by chronopotentiometry in acetonitrile. The ease of oxidation, as reflected in the $E_{1/4}$ -values, decreases with increasing strength of the acid [88].


The current-potential relationship indicates that the rate determining step for the Kolbe reaction in aqueous solution is most probably an irreversible 1 e-transfer to the carboxylate with simultaneous bond breaking leading to the alkyl radical and carbon dioxide [8]. However, also other rate determining steps have been proposed [10]. When the acyloxy radical is assumed as intermediate it would be very shortlived and decompose with a half life of $\tau \approx 10^{-8}$ to carbon dioxide and an alkyl radical [89]. From the thermochemical data it has been concluded that the rate of carbon dioxide elimination effects the product distribution. Olefin formation is assumed to be due to reaction of the carboxylate radical with the alkyl radical and the higher olefin ratio for propionate and butyrate is argued to be the result of the slower decarboxylation of these carboxylates [90].

Whilst electroanalytical data have been interpreted in terms of a mechanism involving the coupling of adsorbed radicals [10, 91] the stereochemistry of the products and the regioselectivity of the coupling reaction indicates that adsorption of saturated alkyl radicals seems to be relatively unimportant. Support that non or weakly adsorbed radicals combine, comes from the coupling products of cyanoalkyl radicals 1 [8]. These radicals with two reaction sites produce the same amount of carbon to carbon and carbon to nitrogen coupling product, when generated by photolytic or thermal decomposition of an azonitrile, by persulfate oxidation or by electrolysis

of a-cyanoacetic acid in methanol, acetonitrile or dimethylformamide. In sharp contrast, photolysis of the same azonitrile adsorbed on silica produces only the carbon to carbon coupling product. Similarly the addition of radical 4 to butadiene affords the same ratio of 1,1-, 1,3- and 3,3-additive dimers, irrespective of whether the radical was generated by anodic or persulfate oxidation of methyl malonate 2 or reductive fragmentation of the hydroperoxide 3 (Eq. 3) [92].

Carboxylates, which are chiral in the α -position totally lose their optical activity in mixed Kolbe electrolyses [93, 94]. This racemization supports either a free radical or its fast dynamic desorption-adsorption at the electrode. A clearer distinction can be made by looking at the diastereoselectivity of the coupling reaction. Adsorbed radicals should be stabilized and thus react via a more product like transition state



that reflects different stabilities of the products. The free radical on the other side should have a more educt like transition state and should therefore couple more randomly. This has been tested with the carboxylic acids 5 to 9. The saturated carboxylic acids 5 and 6 coupled randomly, which indicated that these radicals are not significantly adsorbed. The unsaturated carboxylic acids 7 to 9 did not dimerize quite statistically, which agrees with the fact that unsaturation favors adsorption [95, 96].

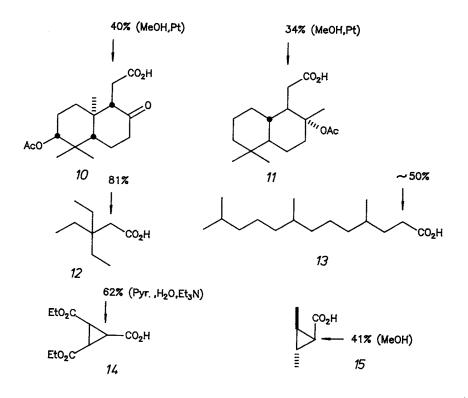
The intermediate radical (Eq. 2) can be further oxidized to a carbenium ion that undergoes solvolysis, rearrangement and elimination (see chaps 8-12). This oxidation is strongly influenced by experimental factors as for example the presence of foreign anions, or the electrode material (see chap. 2). If one assumes, that the radical is oxidized from an adsorbed state the strong increase of the benzyl cation formation in the phenylacetatic acid oxidation by added perchlorate can be explained by the competitive preferential adsorption of the perchlorate anion [31]. With nuclear substituted phenyl acetates the portion of radical coupling products increases with increasing electron withdrawing ability of the substituents, for example with *p-tert*butyl it is 13% (ionization potential of the benzyl radial = 7.4 eV) and for unsubstituted phenyl it is 76% (IP = 7.76 eV). For the oxidation of *p*-methoxyphenylacetic acid a pseudo-Kolbe reaction (see chap. 13) is assumed, which means an electron transfer from the aromatic nucleus [31]. Besides its dimerization or addition to double bonds (chap. 6) the radical can disproportionate or react with oxygen [31, 97]. The ratio of disproportionation to dimerization seems to be higher in Kolbe electrolysis than in an homogeneous reaction [98].

4 Symmetrical Coupling of Carboxylic Acids

Two equal carboxylates can be coupled to symmetrical dimers (Eq. 4). In spite of the high anode potential, that is necessary for Kolbe electrolysis, a fair number of

substituents can be present in the carboxylic acid. As the reaction involves radicals as reactive intermediates, polar substituents can be handled without protection. This saves additional steps for protection and deprotection, that are often necessary in polar reactions, where strong bases, nucleophiles or electrophiles are used as reagents. Furthermore carboxylic acids are readily available in a wide variety of structures. These advantages make Kolbe electrolysis a method of choice for the construction of symmetrical compounds.

R^{1} H Alkyl $(C_{1}-C_{17})$ Alkyl RO_{2}C-(CH_{2})_{n} n = 3-15, R = Me, Et Alkyl Alkyl Alkyl Alkyl Alkyl	R ² H H Alkyl H EtO ₂ C	R ³ H H H	- coupling produ (%) 93 30-90 0-26 40.05	7, 9 7, 9
Alkyl (C_1-C_{17}) Alkyl $RO_2C-(CH_2)_n$ n = 3-15, R = Me, Et Alkyl Alkyl Alkyl	H Alkyi H EtO ₂ C	н н	30-90 0-26	7, 9
(C_1-C_{17}) Alkyl RO ₂ C-(CH ₂) _n n = 3-15, R = Me, Et Alkyl Alkyl Alkyl	Alkyl H EtO ₂ C	н	0–26	
Alkyl $RO_2C-(CH_2)_n$ n = 3-15, R = Me, Et Alkyl Alkyl Alkyl	H EtO ₂ C			
Alkyl $RO_2C-(CH_2)_n$ n = 3-15, R = Me, Et Alkyl Alkyl Alkyl	H EtO ₂ C			
$RO_{2}C-(CH_{2})_{n}$ $n = 3-15,$ $R = Me, Et$ Alkyl Alkyl Alkyl	EtO ₂ C	н	40.05	9
n = 3-15, R = Me, Et Alkyl Alkyl Alkyl			4095	7
Alkyl Alkyl Alkyl				
Alkyl Alkyl				
Alkyl		Н	2085	99, 100
Alkyl	Alkyl	EtO ₂ C	15-35	99, 101
	CN	H, Álkyl	3060	102
	CONH,	H, Alkyl	555	103
Alkyl-CO	Alkyl, Ĥ	Alkyl, H	32-40	104
$CH_3CO(CH_2)_n$	Н	Н		
n = 1			70	105
n = 5			63	106
F, Br, Cl, I, OH, NH ₂	н	Н	0	7, 9, 107
F	F	F	93	84b, 108
F	F	Cl	43	109
X(CH ₂) _n	Н	Н		
X: F, $n > 3$			45-70	110
X: Cl, n: 1, 3, 4, 5, 7, 8, 9, 1	1		40-80	110, 111, 112
			<i>c</i> (7)	
X: Br, n: 4–11, 14			54-71	38a, 110 113
$RO_2C(CF_2)_n$	F	F	nign yield	115
	-	F	40.96	114
$H(CF_2)_n$ n = 3.5	F	F	40-80	114
CE(CE)C	н	н	75	115
CH CO (CH)				32
	н	н	24-39	32, 116
Phthaloyl-N-CHCH				32, 117
CO ₂ H				
	Н	н		
<u>~×</u> _/				
×			~ 1 74	31
			>1-14	51
	DI		25	118
Ph				118
/	н	п	43	110
$-\bigcirc$				
λ.			20	119
\square	Н	н	39	117
	RO ₂ C(CF ₂) _n h = 0-3, R = Me, Et H(CF ₂) _n h = 3, 5 CF ₃ (C ₂ F ₅) ₂ C CH ₃ CO ₂ (CH ₂) _n h = 2-5 CH ₃ CONH-(CH ₂) ₄ PhthaloyI-N-CHCH ₂ CO ₂ H χ χ χ : <i>p</i> -OMe to χ : F ₅ Ph	RO ₂ C(CF ₂) _n F h = 0-3, R = Me, Et H(CF ₂) _n F h = 3, 5 CF ₃ (C ₂ F ₃) ₂ C H CH ₃ CO ₂ (CH ₂) _n H h = 2-5 CH ₃ CONH-(CH ₂) ₄ H PhthaloyI-N-CHCH ₂ CO ₂ H H X: p-OMe to X: F ₅	RO ₂ C(CF ₂) _n F F h = 0-3, R = Me, Et H(CF ₂) _n F F h = 3, 5 CF ₃ (C ₂ F ₅) ₂ C H H CH ₃ CO ₂ (CH ₂) _n H H h = 12-5 CH ₃ CONH-(CH ₂) ₄ H H PhthaloyI-N-CHCH ₂ H CO ₂ H H H χ X: p-OMe to X: F ₅ Ph Ph H H H	$\begin{array}{cccc} \operatorname{RO}_2\operatorname{C}(\operatorname{CF}_2)_n & \mathrm{F} & \mathrm{F} & \mathrm{high yield} \\ \operatorname{h} = 0-3, \mathrm{R} = \mathrm{Me}, \mathrm{Et} \\ \operatorname{H}(\operatorname{CF}_2)_n & \mathrm{F} & \mathrm{F} & \mathrm{40-86} \\ \operatorname{h} = 3, 5 \\ \operatorname{CF}_3(\mathrm{C}_2\mathrm{F}_5)_2\mathrm{C} & \mathrm{H} & \mathrm{H} & 75 \\ \operatorname{CH}_3\operatorname{CO}_2(\mathrm{CH}_2)_n & \mathrm{H} & \mathrm{H} & 70-83 \\ \operatorname{h} : 2-5 \\ \operatorname{CH}_3\operatorname{CONH-(\mathrm{CH}_2)_4} & \mathrm{H} & \mathrm{H} & 24-39 \\ \operatorname{Phthaloyl-N-CHCH}_2 & \mathrm{H} & \mathrm{H} \\ \operatorname{cO}_2\mathrm{H} & \mathrm{H} & \mathrm{H} \\ \mathrm{X} : p \cdot \mathrm{OMe to} & >1-74 \\ \mathrm{X} : p \cdot \mathrm{OMe to} & >1-74 \\ \mathrm{H} & \mathrm{H} & \mathrm{H} & 45 \end{array}$

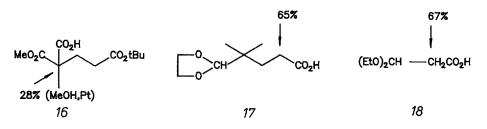

Table 2. Symmetrical coupling of selected carboxylic acids

^a Electrolyses are normally performed at a platinum anode in water, methanol, ethanol or ethanol/ water A great number of Kolbe dimerizations have been tabulated in refs. [9, 17-19]. Here no comprehensive coverage is intended, but to demonstrate with selected examples the range and limitations of Kolbe dimerization. In the following discussion and in Table 2 the carboxylates are arranged according to their functional groups in the order alkyl-, ester-, keto-, halo- and olefinic substituents.

In general, only the kind of substituent in the α -position is critical for the yield of the coupling product. Electron donating groups (more than one alkyl group, phenyl, vinyl, halo or amino substituents) more or less shift the reaction towards products that originate from carbenium ions (non-Kolbe products, see chap. 7). Electron attracting groups (cyano, ester or carbonyl substituents) or hydrogen, on the other side, favor the radical dimerization.

The reaction conditions, normally applied, are those described in chap. 2 for the radical pathway. These are a platinum anode, high current densities, no additives and a slightly acidic medium. However, the dimerizations shown in Table 2, No. 2, also gave in some cases good yields at a carbon anode in acetonitrile-water [52] or at a baked carbon anode in methanol [48]. With propionic and butyric acid an unusually high portion of alkene is formed at the cost of the dimer.

The coupling of carboxylic acids has been profitably used in natural product synthesis. Kolbe electrolysis of 10 is part of a (+)- α -onocerin synthesis [120], the dimerization of 11 leads to a pentacyclosqualene [121], the electrolysis of 12 afforded a dimerwith two quaternary carbon atoms [122], and 2,6,10,15,19,23-hexamethyltetracontane has been synthesized from 13 [123].


For the preparation of long-chain alkanes it proved useful to extract the electrolyte continously with a high boiling point nonpolar solvent. This way the alkanes: $C_{34}H_{70}$, $C_{38}H_{78}$ and $C_{42}H_{86}$ were prepared with high yields (70, 75 and 87%, respectively) [124].

Some cyclopropylcarboxylic acids, namely 14 [125] and 15 [46] could be coupled to bicyclopropyl compounds, others led to allylic compounds via ring opening of an intermediate carbenium ion (see chap. 7). Tertiary alkanoates yield predominantly non-Kolbe products (see chap. 8).

The Brown-Walker version of Kolbe electrolysis namely the dimerization of halfesters to diesters of diacids, is of industrial interest, because using this method, sebacates can be prepared from adipic half esters [126]. This process appears to have reached the pilot stage in Germany [11], Japan [13], and Russia [12]. In Russia, the behaviour of other half esters has also been studied in detail [12]. From China, too, activities concerning this coupling reaction have recently been reported [127]. Yields as high as 93% have been obtained [128]. Bis(2-ethylhexyl)sebacate, a plasticizer, has been prepared from the corresponding adipate in 85% yield [128]. In sebacate production, platinum can be replaced by a special carbon anode, which gives nearly the same yields as platinum and is highly resistant to the electrolyte [129].

Efficient syntheses of substituted succinic acids (Table 2, Nos. 5, 6) have been developed in the past; a more recent application is the coupling of **16** as part of a semibullvalene synthesis [130].

 α, ω -Dicarboxylated polyethylene or polydifluormethylene is reported to be obtained by electrolysis of azelaic acid [131] or perfluoroglutaric acid [132].

Whilst ketocarboxylic acids can be dimerized satisfactorily (Table 2, No. 9, 10), the corresponding aldehydes couple poorly. Good yields can be obtained in these cases when the acetals, e.g. 17 [133], 18 [134], are electrolyzed instead.

Carboxylic acids with a halide, hydroxy or amino group in the α -position form no dimers (Table 2, No. 11), except when two or three fluorine atoms are present there (Table 2, No. 12). A large amount of work has been devoted to the coupling of fluoro-carboxylic acids (Table 2, Nos. 13–16) due to interesting properties of the produced fluorohydrocarbons. By statistical analysis optimal conditions for Kolbe electrolysis of perfluorinated acids have been calculated [135].

Hydroxy- and amino carboxylic acids can be dimerized in good to moderate yields, when the substituents are not in the α - or β -position and when they are additionally protected against oxidation by acylation (Table 2, No. 17–19). 2-Alkenoic acids cannot be dimerized but lead to more or less extensive passivation of the anode due to the formation of polymer films [136]. 3- and 4-Alkenoic acids give moderate yields when they are neutralized with Bu₃N or Et₃N [136]. 3-Alkenoic acids with the structure

of unsymmetrical half esters, derived from Stobbe condensations, afford dimers in 14–30% yield, major side products are ethers arising from non-Kolbe electrolysis [137]. 3-Alkenoic acids dimerize to a mixture of three 1,5-dienes (Eq. 5), that arise by 1,1'-, 1,3'- und 3,3'-coupling of the intermediate allyl radical [138]. When the 3-position of the allyl radical is increasingly sterically shielded, the ratio of 3-coupling decreases. The relative amount of the 1,1'-dimer thus can vary from 52 to 76% (Table 3). The configuration of non-terminal double bonds is retained to a high degree (~90%) [138a].

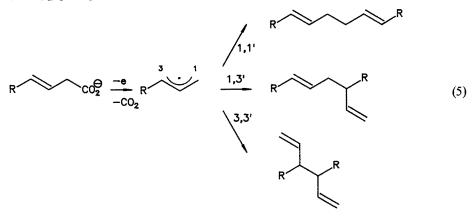
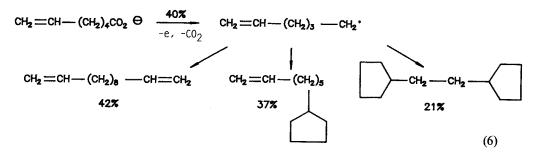
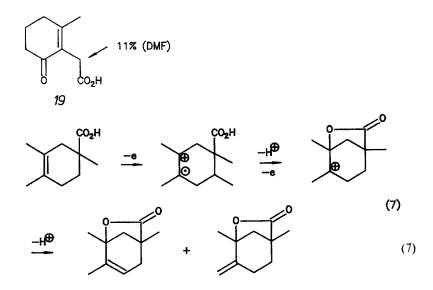



Table 3. Yields in Kolbe dimerization of 3-alkenoic acids [138b]

Carboxylic acid ^a	Produc	t distributio	on (%)	Yield
	1,1'	1,3'	3,3'	- (%)
$CH_3 - (CH_2)_7 - CH = CH - CH_2 - CO_2^{-1}$	52	39	9	67
$(CH_3)_2 - CH - CH = CH - CH_2 - CO_2$	59	41	_	79
$(CH_3)_3 - C - CH = CH - CH_2 - CO_2^-$	60	40	-	15
CH₂-CO₂ [⊕]	60	40	_	45
$(CH_3)_2 - CH = CH - CH_2 - CO_2^{-1}$	65		36	42
СH-СH2-С020	76	24	_	29


* 10–150 mmol were dissolved in 25–100 ml methanol, neutralized to 8–50 % with triethylamine and electrolyzed in an undivided cell at platinum electrodes at 400–800 mA/cm² with change of polarity of the electrodes until pH = 8 was reached

103

With 6-alkenoic acids the intermediate radical partially cyclizes to a cyclopentylmethyl radical in a 5-*exo-trig* cyclization [139] (Eq. 6) [138a, 140] (see also chap. 6). To prevent double bond migration with enoic acids the electrolyte has to be hindered to become alkaline by using a mercury cathode. Z-4-Enoic acids partially isomerize to *E*-configurated products. Results from methyl and deuterium labelled carboxylic acids support an isomerization by way of a reversible ring closure to cyclopropylcarbinyl radicals. The double bonds of Z-N-enoic acids with N > 5 fully retain their configuration [140].

The acid **19** has been dimerized, although in low yield, in the course of a perhydrophenanthrene synthesis [141]. When the oxidation potential of the double bond is sufficiently lowered by alkyl substituents, lactone formation by oxidation of the couble bond rather than of the carboxyl group occurs (Eq. 7) [142] (see also chap. 15).

Other alkenoic acids that have been dimerized with retention of configuration at the double bond are oleic acid (23% dimer yield), elaidic acid (44%) [143], and erucic acid (40%) [144].

Substituted phenylacetic acids form Kolbe dimers when the phenyl substituents are hydrogen or are electron attracting (Table 2, Nos. 20–23); they yield methyl ethers (non-Kolbe products), when the substituents are electron donating (see also chap. 8). Benzoic acid does not decarboxylate to diphenyl. Here the aromatic nucleus is rather oxidized to a radical cation, that undergoes aromatic substitution with the solvent [145].

5 Cross-Coupling of Different Carboxylates

Cross coupling of two different carboxylates (= mixed Kolbe electrolysis) is a method for synthesizing unsymmetrical compounds (Eq. 8). As, however, the intermediate radicals combine statistically, the mixed coupling product Recent Contributions of Kolbe Electrolysis to Organic Synthesis

is always accompanied by two symmetrical dimers as major side products. To make this coupling more attractive for synthesis the less costly acid is taken in excess. This way the number of major products is diminished to two, which facilitates the isolation of the mixed dimer. Furthermore the more costly acid is incorporated to a large extent into the mixed dimer. Some calculated yields are listed in Table 4. Some experimental yields obtained for cross-coupling of methyl adipate with hexanoate are compiled in Table 5.

When one of the two acids is used in excess and the pk_a -values of the two acids differ strongly, the salt deficit method should be used with caution. Formic acid, acetic acid, propionic acid, and trifluoroacetic acid have been electrolyzed competitively in mixtures of pairs. Formic acid and trifluoroacetic acid are comparable in case of electrolysis, both are more readily electrolyzed than acetic and propionic acids. Deviations are rationalized on the basis of differences in ionization [147]. It might be useful in such cases to neutralize both acids completely. Sometimes one of the two acids, although being the minor component, is more favorably oxidized possibly due to preferential adsorption or its higher acidity [148]. In this case the continuous addition of the more acidic acid to an excess of the weaker acid may lead to successful cross-coupling [149]. The chain length of the two acids should be chosen in such a

¹ RCO ₂ H	:	² RCO ₂ H	Yield of ${}^{1}R{-}^{2}R$ (%) ^a
1	:	1	50
1	:	2	66
1	:	4	80
1	:	6	86
1	:	10	91

Table 4. Calculated theoretical yields for mixed coupling products ${}^{1}R{}^{-2}R$

^a Calculated according to %-Yield = $n \cdot 100/(1 + n)$ with 1:*n* as ratio of ${}^{1}RCO_{2}H:{}^{2}RCO_{2}H$

Table 5. Yield of methyl decanoate in the cross-coupling of methyl adipate and hexanoate [146]

Ratio of HO ₂ C(CH ₂) ₄ CO ₂ CH ₃	:	CH ₃ (CH ₂) ₄ CO ₂ H	%-Yield of MeO ₂ C(CH ₂) ₈	CH ₃ (%)
			in MeOH	in H ₂ O
1	:	1	36	12
1	:	2	49	39
1	:	6	58	48

way that the symmetrical dimer formed in excess can be separated from the crosscoupling product either by distillation or crystallization. For smaller scale reactions the selective coupling of two different alkyl groups can be achieved by photolysis of unsymmetrical peroxides at low temperatures in the solid state [150].

Problems due to passivation that lead to an increase of the cell voltage or due to competition by non-Kolbe electrolysis [179] are often less pronounced in mixed coupling.

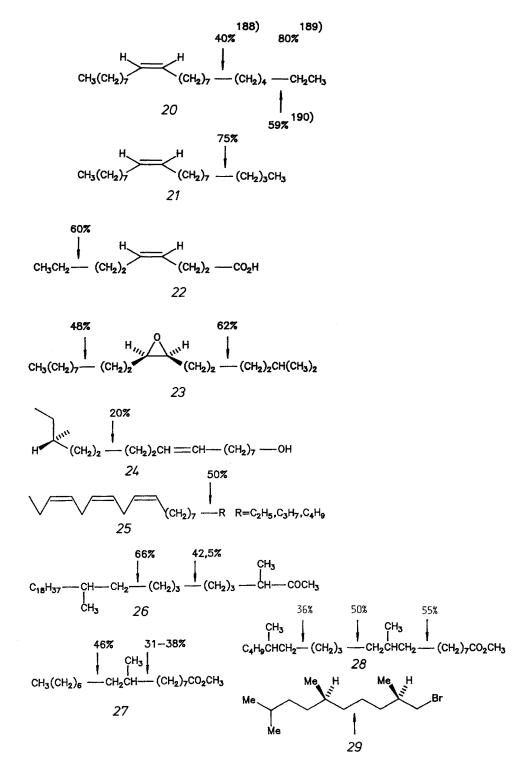
Despite of the disadvantage that at least one symmetrical dimer is formed as a major side product, mixed Kolbe electrolysis has turned out to be a powerful synthetic method. It enables the efficient synthesis of rare fatty acids, pheromones, chiral building blocks or non proteinogenic amino acids. The starting compounds are either accessible from the large pool of fatty acids or can be easily prepared via the potent methodologies for the construction of carboxylic acids.

Another advantage of the synthesis by mixed Kolbe electrolysis is that polar groups in the carboxylic acid are tolerated in radical coupling. This makes additional protection-deprotection steps unneccessary, which are often needed in polar CC-bond forming reactions and can make these approaches less attractive in such cases.

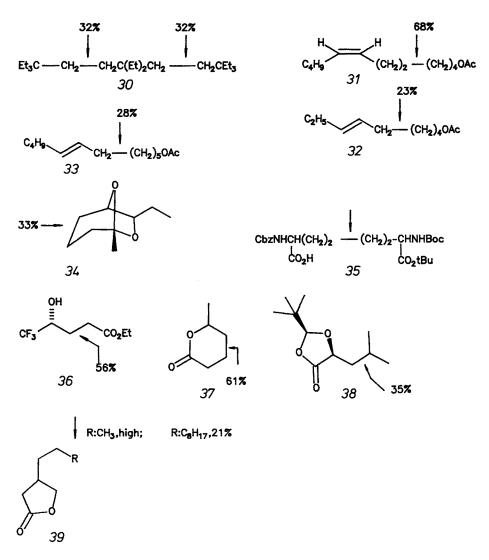
Selected examples of the large number of compounds synthesized since the pioneering work of Weedon are subsequently arranged either in Tables 6, 7 or in formulas. At first the coupling products between unsubstituted alkyl groups and substituted

Carboxylic acids		Crosscoupling product (A-B)	Ref.
A-CO ₂ H	B-CO ₂ H	Yield (%)	
CH ₃ (CH ₂) ₆ CO ₂ H	$CH_3O_2C(CH_2)_4C \equiv C(CH_2)_4CO_2H$	23	151
$CH_3(CH_2)_{14}CO_2H$	(CH ₃) ₂ CHCO ₂ H	40	152
$CH_3(CH_2)_5CO_2H$	$(E) - CH_3(CH_2)_7CH = CH(CH_2)_7CO_3H$	37	152
CD ₃ CO ₂ H	CF ₃ CO ₂ H	68	149
CD, CO, H	CF ₃ CF ₂ CO ₂ H	75	149
CH ₃ CO ₂ H	$HC \equiv C - (CH_2)_8 CO_2 H$	36	153
CH,CH,CO,H	$C_6H_5-(CH_2)_2CO_2H$	44	154
CH ₃ (CH ₂) ₃ ĆO ₂ H	CH ₃ O ₂ C(CH ₂) ₇ CO ₂ H	69	144
CH ₃ (CH ₂) ₅ CO ₂ H	CH ₃ O ₅ C(CH ₅) ₇ CO ₅ H	61	144
CH ₃ (CH ₂) ₂ CO ₂ H	CH ₃ O ₂ CCH(OCOCH ₃)CO ₂ H	29	155
CH ₁ (CH ₂),CO ₂ H	CH ₃ CO(CH ₂) ₄ CO ₂ H	62	156
Methylhexadecanoic acid	CH ₃ O ₂ C(CH ₂) ₄ CO ₂ H	42	157
CH ₃ (CH ₂) ₈ CO ₂ H	CH ₃ O ₂ C(CH ₂) ₄ CO ₂ H	38	146
CH ₃ (CH ₂) ₂ CO ₂ H	CH ₃ O ₂ CCH ₂ CH(CH ₃)CH ₂ CO ₂ H	30	158
CH2CO2H	$\mathrm{CH_{3}O_{2}C(CH_{2})_{11}CO_{2}H}$	30	159
(CH ₃) ₃ C(CH ₂) ₂ CH(CH ₃)- -CH ₂ CO ₂ H	$CH_3O_2CCH_2CH(C_2H_5) - CH_2CO_2H$	15	160
$CH_{3}(CH_{2})_{10}CO_{2}H$	CH ₃ O ₂ CCH(OCH ₃)CH ₂ CO ₂ H	21	161
CH ₃ (CH ₂) ₇ CH(CH ₃)CH ₂ CO ₂ H	CH ₃ O ₂ C(CH ₂) ₇ CO ₂ H	30	162
$Me(CH_2)_m CO_2 H$	$CH_3O_2C(CH_2)_nCO_2H$		163
m = 8-16, 18 i-C ₄ H ₉ CO ₂ H	n = 4, 7, 8, 12–20 $(C_2H_5)_2C(CO_2Et)CO_2H$	38	164

Table 6. Cross-coupling by Kolbe electrolysis of unsubstituted (A) with substituted carboxylic acids (B)


alkyl groups are described, whereby the latter are ordered according to the presence of double and triple bonds, hydroxy groups, halides, carbonyl, carboxyl, ester, amino groups and other heterosubstituents. These examples are than followed by crosscoupling products between two substituted alkyl groups in the same order. In the formulas often the product of subsequent transformations is shown, the coupling site is marked by an arrow and the yield in mixed Kolbe electrolysis is indicated. Further examples are given in references [9, 23].

A large number of trialkylacetic acid esters have been prepared by mixed Kolbe electrolysis of ethyl malonates [164]. Crossed-coupling is also used for chain extension. Extension by two carbon atoms is achieved with benzyl succinates [153, 180–182], whereby the purification of the chain extended fatty acid is simplified by using the benzyl half ester [181 a].

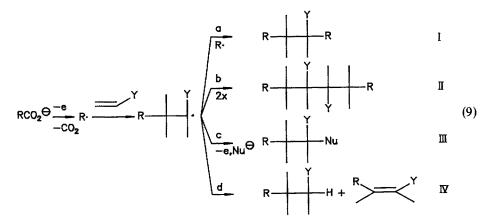

Extension by three carbon atoms is possible with methyl glutarate [183], by the isoprene unit with ethyl 3-methyl adipate [184], by four carbon atoms with methyl adipate [143], by five carbon atoms with methyl pimelate [185] and by six carbon atoms with methyl suberate [186]. A series of branched ω -fluorocarboxylic acids were prepared by cross-coupling with ω -fluorocarboxylic acids [187]. For further examples see Tables 6, 7.

Carboxylic acids	-	Crosscoupling product (A-B)	Ref.
A-CO ₂ H	B-CO ₂ H	Yield (%)	
$CH_2 = CH(CH_2)_2CO_2H$	CH ₃ O ₂ C(CH ₂) ₁₀ CO ₂ H	68	165
$(CH_3)_2CHCH = CHCH_2CO_2H$	$CH_3O_2C(CH_2)_nCO_2\tilde{H}$ n = 1, 2, 4	good	166 a
(Z)-CH ₃ O ₂ C(CH ₂) ₂ CH=CH(CH ₂) ₂ CO ₂ H	CH ₃ (CH ₂) ₂ CO ₂ H	30	166 b
$CH_2 = CH(CH_2)_8CO_2H$	CH ₃ O ₂ C(CH ₂),CO ₂ H	52	166 c
$R - C \equiv C - (CH_2)_3 CO_2 H$	CH ₃ O ₂ C(CH ₂) _n CO ₂ H	45-59	167
$R: C_2H_5, C_3H_7, C_4H_9$	n = 2, 3, 4, 6		
(Z)-CH ₃ (CH ₂) ₇ CH=CH-(CH ₂) ₇ CO ₂ H	CH ₃ O ₂ C(CH ₂) ₂ CO ₂ H	15-20	168
CF ₃ CF ₂ OCF ₂ CO ₂ H	$MeO_2C(CF_2)_nCO_2H$ n = 1-3	24–34	169
CF ₃ OCF ₂ CF ₂ CO ₂ H	$MeO_{2}C(CF_{2})_{n}CO_{2}H$ n = 1-3	24–34	169
CF ₃ CO ₂ H	CH ₃ O ₂ CCH ₂ CO ₂ H	46	170
$Br(CH_2)_{10}CO_2H$	CH ₃ O ₂ C(CH ₂),CO,H	50	144
$Br(CH_2)_{10}CO_2H$	EtO, C(CH,), CO, H	54	171
$Br(CH_2)_{10}CO_2H$	MeO ₂ C(CH ₂) ₄ CO ₂ H	37	38b
AcO(CH ₂) ₄ CO ₂ H	EtO ₂ C(CH ₂) ₁₀ CO ₂ H	27-32	172, 178
Me ₃ SiCH ₂ CO ₂ H	$MeO_2C(CH_2)_{r}CO_2H$ n = 4.7	71–76	173
$CH_3O_2C(CH_2)_{11}CO_2H$	CH ₃ O ₂ C(CH ₂) ₄ CO ₂ H	-	174
$CH_3O_2C(CH_2)_{10}CO_2H$	CH ₃ O ₂ C(CH ₂) ₄ CO ₂ H		175
$CH_{3}O_{2}C(CF_{2})_{n}CO_{2}H$ n = m = 1-4	$CH_3O_2C(CF_2)_mCO_2H$	25–38	113
CH ₃ CO(CH ₂) ₂ CO ₂ H	CH ₃ CO(CH ₂) ₄ CO ₂ H	31	176
CH ₃ CO(CH ₂) ₈ CO ₂ H	CH ₃ O ₂ C(CH ₂) ₄ CO ₂ H	32	177

Table 7. Cross-coupling by Kolbe electrolysis of substituted carboxylic acids (A) with substituted carboxylic acids (B)

108

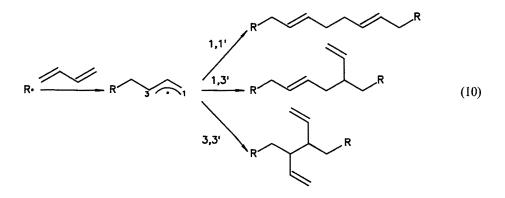
Muscalure 20, the pheromone of the housefly has been prepared from oleic acid or erucic acid, similarly (Z)-11-heneicosene 21, the synergist of muscalure was obtained [189]. The intermediate 22 for the pheromone of the Cabbage looper was prepared using (Z)-methyl-4-octenedioate [166b], that was obtained by partial ozonolysis of (Z,Z)-1,5-cyclooctadiene. Similarly disparlure 23, the sex attractant of the gypsy moth, has been synthesized by two successive crossed-couplings with (Z)-4-octene dioate [191].


The optically active *Trogoderma* -pheromones (*E*)- and (*Z*)-24 have been synthesized starting from (*S*)-citronellol and 4-pentynoic acid [192]. Alkatrienes 25, sex attractants of Lepidoptera, were prepared by mixed Kolbe electrolysis with linolenoic acid [193]. 26, the pheromone of the German cockroach *Blattela Germanica* has been prepared from 3-methylheneicosanoic acid [194]. (\pm) — Tuberculostearic acid (27) has been

obtained in two successive electrolyses from methyl 2-methyl-succinate [195]. 10,16-Dimethyleicosanoic acid 28 was synthesized by three successive electrolyses [180]. The bromide 29, a key intermediate in the synthesis of natural α -tocopherol has been prepared starting from (R)-(+)-citronellic acid [196]. The alkane 30 with three quaternary carbon atoms has been obtained by two successive cross-couplings [122]. In an alternative approach looplure 31, the pheromone of the Cabbage Looper was made available by Kolbe electrolysis of (Z)-4-nonenoic acid with methyl glutarate [197]. Similarly the pheromone of the fruit pest insect Dacus cucurbitae 32 [198] and of the false codling moth 33 [199] have been prepared. Cross-coupling of (E)-3-hexenoic acid and levulinic acid provided a shorter route to brevicomin 34 [200], the sex attractant of the western pine beetle. Pure (E)- or (Z)-configurated unsaturated pheromones can be prepared by cross-coupling with 5-alkynoic acids and subsequent selective hydrogenation (Table 7) [167]. In the cross-coupling of perfluorinated acids with unsubstituted acids an excess of the weaker acid and a solvent with alkaline properties, e.g. pyridine, seems to be profitable [201]. The attempted cross coupling between trifluoroacetate and propionate does not lead to a mixed dimer but to the addition product of the CF₃-radical to ethylene formed from propionate [43b]. Useful intermediates for the synthesis of dicarba analogues of cystine peptides 35 have been prepared by mixed Kolbe-electrolysis of protected L- or D-glutamic acids [202]. Chiral building blocks 36-38 for synthesis have been obtained by cross-coupling with enantiomerically pure β -hydroxybutyric acid derivatives [203]. Chiral γ -lactones 39 have been prepared from (R)-3-cyclohexene-1-carboxylic acid [204].

By coelectrolysis of polymethacrylic acid with ε -acetaminocaproic acid or cyanoacetic acid the alkylacetamido- or cyanomethyl group can be grafted on to the main chain of the polymer [205].

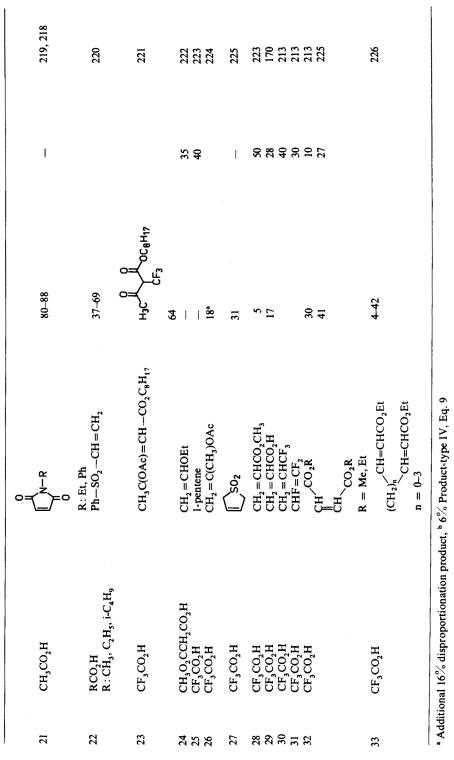
6 Addition of Kolbe Radicals to Double Bonds


Kolbe radicals can be added to olefins that are present in the electrolyte. The primary adduct, a new radical, can further react by coupling with the Kolbe radical to an additive monomer I (Eq. 9, path a), it can dimerize to an additive dimer II (path b), it can be further oxidized to a cation, that reacts with a nucleophile to III (path c), or it can disproportionate (path d).

Oligomerization and polymerization of the olefin by addition of the primary adduct to further monomers occurs only in a few cases (see below). The radical concentration in the reaction layer in front of the electrode is so high, that the termination step and not the propagation step of the polymerization predominates. On the other hand as a result of the high radical concentration the dimerization of the Kolbe radical can compete strongly with the addition. With reactive olefins, e.g. butadiene, isoprene or styrene, generally good yields of adduct are obtained (Table 8, Nos. 1-10). With unreactive olefins, however, like cyclohexene, isobutene (Table 8, No. 11) the yields of addition product are low and Kolbe dimers predominate. However, for ethylene good yields have also been claimed (No. 12). The yields can be increased, when nucleophilic radicals, as alkyl radicals, are added to electrophilic olefins, as α , β -unsaturated carbonyl compounds or nitriles (Nos. 17–22). The same seems to be valid for the reaction of electrophilic radicals (CF3, MeO2CCH2) with nucleophilic olefins, as enols or enolacetates (Nos. 23-27). With the trifluoromethyl radical, obtained from trifluoroacetic acid, also with electrophilic olefins fair yields of adduct have been found.

To some degree the ratio of additive monomer to additive dimer can be influenced by the current density. High current densities favor the formation of additive monomers, low ones these of additive dimers (Table 8, Nos. 4, 5). This result can be rationalized according to Eq. 9: At high current densities, which corresponds to a high radical concentration in front of the electrode, the olefin can trap only part of the Kolbe radicals formed. This leads to a preferred coupling to the Kolbe dimer and a combination of the Kolbe radical with the primary adduct to the additive monomer. At low current densities the majority of the Kolbe radicals are scavenged by the olefin, which leads to a preferential formation of the additive dimer.

In the addition to 1,3-dienes, e.g. butadiene, an intermediate allyl radical is formed, that couples to 1,1'-, 1,3'- and 3,3'-dimers (Eq. 10). The reactivity of the intermediate allyl radical is about 2.4 to 2.7 higher in the C1- than in the C3-position leading to a preferred formation of the 1,1'-dimer [206].

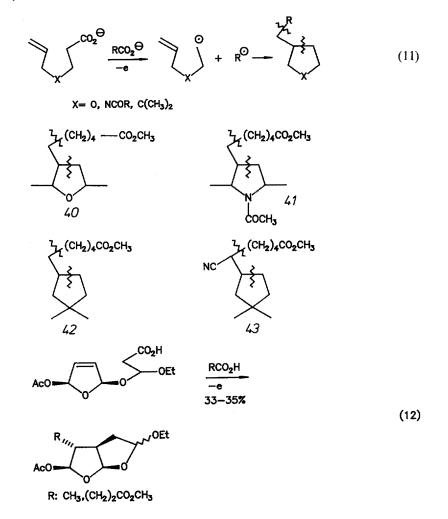

The ratio of C1- to C3-coupling is not influenced by the solvent but to some extent by the electrode material [227].

Additions of Kolbe radicals to dienes are reported in refs. [45, 215, 228] and in the reviews named in chap. 1.

No.	Carboxylic acid	Olefin	Additive monomer (%-yield)	Additive dimer (%yeyield)	Ref.
1	СН, О, ССН, СО, Н	styrene	4	38ª	206
7	CH,O,CCH,CO,H	butadiene	17	18	206
°	CH,o,ccH,co,H	isoprene	1	. 64	206
4	Eto, cco, H	butadiene	4	99	206. 207
	a	$(i = 0.025 \text{ A/cm}^2)$			
\$	EtO ₂ CCO ₂ H	butadiene	15	8	206
		$(i = 0.66 \text{ A/cm}^2)$			
9	EtO ₂ CCO ₂ H	isoprene	8	59	206
7	CH ₃ O ₂ C(CH ₂) ₄ CO ₂ H	butadiene	48	48	208, 209
8a	HO ₂ CCO ₂ H	butadiene	1	20	210
8b	HO ₂ CCO ₂ H	0=	62	34	211
		- And			
		OME			
		UMe			
		-0-			
6	СН, О, ССН, СО, Н	œ-methyl-styrene		46 ^b	138 b
10	CH,CÔ,H	styrene		15	212
11	EtŐ, CCO, H	isobutene	6		206
12	CH,CO,H	$CH_2 = CH_2$	~ 70		213
13	CLCCO.H	$CH_{2} = CH_{2}$		ļ	214
14	НО́, ССО́, Н	$CH_{2} = CH_{2}$	25	46	213
15	CH ₁ O,C(ĊH,) ₂ CO,H	CH, =CH,	15		213
16	сн, со, н	Me _c CCH = CH,	45	Ι	215
17	CH,CO,H	$CH'_{i} = C(CH_{i})CHO$	-	80	216
18	CH,CO,H	$CH_{i} = CH - CO, Et$	٩	70	216
19	CH ₃ CO ₂ H	, cô₂cH₃	21-high	I	217, 218
20	PhCH ₂ CO ₂ H	CO2CH3	24	I	219
		cu2ch3			

112

Table 8. Addition of Kolbe-radicals to olefins

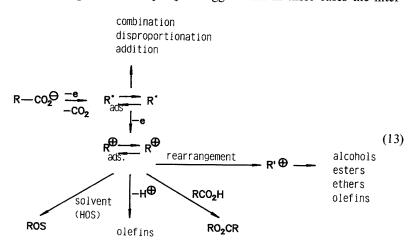

Recent Contributions of Kolbe Electrolysis to Organic Synthesis

113

The electrolysis of methyl adipate in the presence of butadiene has received considerable attention, because it makes long chain diacids easily accessible. A total yield of 96% diester has been claimed for this reaction (Table 8, No. 7).

The addition of various Kolbe radicals generated from acetic acid, monochloroacetic acid, trichloroacetic acid, oxalic acid, methyl adipate and methyl glutarate to acceptors such as ethylene, propylene, fluoroolefins and dimethyl maleate is reported in ref. [213]. Also the influence of reaction conditions (current density, olefin-type, olefin concentration) on the product yield and product ratios is individually discussed therein. The mechanism of the addition to ethylene is deduced from the results of adsorption and rotating ring disc studies. The findings demonstrate that the Kolbe radicals react in the surface layer with adsorbed ethylene [229]. In the oxidation of acetate in the presence of 1-octene at platinum and graphite anodes, products that originate from intermediate radicals and cations are observed [230].

In some cases the polymerization of reactive olefins can be initiated by electrolysis of carboxylic acids. Monomers that have been polymerized this way are styrene [212],

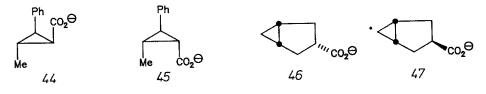

acrylonitrile [212], vinyl acetate [231], methyl acrylate [231], vinylchloride [232], acrylic acid [232] and acrylamide [233].

Kolbe radicals can also be trapped by oxygen to yield dialkylperoxides, aldehydes, and ketones [97]. Furthermore methyl and trifluoromethyl radicals from acetic acid and trifluoroacetic acid are trapped, although inefficiently, by pyridine (3-20%) [234], benzotrifluoride and benzonitrile [235].

Alkyl radicals that add only in low yield to nucleophilic alkenes can be more efficiently trapped, if they react intramolecularly. Kolbe electrolysis of $\Delta^{6,7}$ - and $\Delta^{7,8}$ unsaturated carboxylates leads to five membered and six membered rings in a 5- or 6-exo-trig cyclization [139]. Such an intramolecular cyclization was first reported by Weedon [138a]. In a systematic study on the Z/E-isomerization of unsaturated carboxylates with different distances of the double bond from the carboxylate group cyclopentanes and to a smaller extent cyclohexanes were formed by cyclization of the intermediate 5-hexenyl and 6-heptenyl radicals [140]. This reaction has been utilized for the efficient construction of heterocycles (Eq. 11, 40 (41%) [236], 41 (53%) [237]. and carbocycles 42 (74%), 43 (75%) [238]. The reaction has been applied to the synthesis of a prostaglandine precursor (Eq. 12) [239]. The stereospecificity of this reaction can be rationalized by the *cis*-annulation of five-membered rings and the predominant coupling of the cyclized radical from the sterically unshielded site. Compared to chemical radical cyclizations [240] these electrochemical ring closures have the advantages that they join two carbon bonds in one step, whilst in the chemical reactions in most of the cases only one carbon-carbon and one carbon-hydrogen bond are formed. Secondly electrolysis avoids the toxic tributylin hydrides, that are mostly used as initiators in the chemical radical cyclizations.

7 Non-Kolbe Electrolysis to Carbenium Ions as Intermediates

The electrolysis of carboxylic acids in aqueous solution can lead to alcohols and esters as major reaction products [5, 241]. When electrolyses are performed in methanol or acetic acid methyl ethers or acetates can be found as side or major products. These observations led Walling and others [242] to suggest that in these cases the inter-



mediate Kolbe radicals are further oxidized to carbenium ions that undergo solvolysis and elimination. The oxidation of carboxylates to carbenium ions has been applied in mechanistic investigations and used in synthesis, this work is summarized in refs. [9, 18, 19, 25].

In order to be more precise the oxidation of carboxylates to radicals shown in Eq. 2, has to be extended by some additional steps outlined in Eq. 13. The free or adsorbed radical is further oxidized to a free or adsorbed carbenium ion. This can solvolyze to ethers, alcohols or esters, can lose a proton to form an olefin, can combine with the unreacted acid to an ester, or can undergo rearrangement or fragmentation prior to these reactions. This part of the anodic decarboxylation, leading to carbenium ions, is often called the Hofer-Moest reaction, when water is used as solvent, or more generally non-Kolbe electrolysis. The two electron oxidation can be recognized by a major portion of olefinic products, the formation of alcohols, esters, ethers, amides and especially by means of products that originate from rearrangement or fragmentation.

Low current densities suppress Kolbe-dimerization and promote the formation of alcohols or ethers [9, 31]. Non-Kolbe electrolysis is further favored by graphite as the electrode material [243, 244, 245, 246b]. However, if nonporous carbon anodes (baked carbon, vitreous carbon, hard carbon) are used Kolbe dimers are formed in moderate to good yields [48]. This suggests that the different real surface areas of the carbon anodes lead to different current densities and thus different radical concentrations at the electrode. High concentrations at dense graphite favor the bimolecular dimerization, whilst low ones at soft graphite support the second electron transfer. With porous graphite even primary alkanoates can be oxidized to primary carbenium ions [52].

A mixture of water/pyridine appears to be the solvent of choice to aid carbenium ion formation [246]. In the Hofer-Moest reaction the formation of alcohols is optimized by adding alkali bicarbonates, sulfates [39] or perchlorates. In methanol solution the presence of a small amount of sodium perchlorate shifts the decarboxylation totally to the carbenium ion pathway [31]. The structure of the carboxylate can also support non-Kolbe electrolysis. By comparing the products of the electrolysis of different carboxylates with the ionization potentials of the corresponding radicals one can draw the conclusion that alkyl radicals with gas phase ionization potentials smaller than 8 eV should be oxidized to carbenium ions [8c] in the course of Kolbe electrolysis. This gives some indication in which cases preferential carbenium ion formation or radical dimerization is to be expected. Thus α -alkyl, cycloalkyl [247, 248], α -chloro [249] or bromo, α -amino, alkoxy, hydroxy, acyloxy, α,α -diphenyl more or less promote the oxidation of the radical to the carbenium ion. Besides electronic effects the oxidation seems also to be controlled by steric factors. In the oxidation of nuclear substituted phenylacetic acids even strongly electron withdrawing

groups, such as CF_3 , do not inhibit the oxidation of the radical. This has been interpreted by a lower extent of adsorption, from which the dimerization is assumed, due to steric shielding [31]. In summary, the experimental factors that favor the carbenium ion pathway are: low current density, a porous graphite anode, addition of foreign anions (e.g. perchlorate), a high pH and structural factors in the carboxylic acid as electron donating groups in the α -position and bulky substituents that retard adsorption of the radicals.

It is generally assumed that the carbenium ion is formed by oxidation of the intermediate radical (Eq. 13). There are, however, small differences in the product ratios of configurational isomers in the non-Kolbe electrolysis of 44/45 and 46/47 that could be interpreted as a result of a synchronous electrocyclic ring opening of an acyloxy cation (RCO_2^+) [249]. The differences are, however, small and do not point to RCO_2^+ as being a significant intermediate. The carbenium ions formed are assumed to be "hot". The product distribution is similar to that obtained from carbenium ions generated chemically by deamination and deoxygenation [243, 250, 251]. Compared to the chemically formed carbocations, the pH in the electrolysis can be chosen rather freely. This way rapid rearrangements can be partially intercepted by electrolysis at high pH [252], e.g. of the anodically generated pinacolyl cation [253]. The degree and rate of rearrangement seems to be independent of the electrode material, whether it is platinum or carbon [254] appears to have no effect.

Non-Kolbe electrolysis may lead to a large product spectrum, especially when there are equilibrating cations of about equal energy involved. However, in cases where the further reaction path leads to a particularly stabilized carbocation and either elimination or solvolysis can be favored, then non-Kolbe electrolysis can become an effiyient synthetic method. This is demonstrated in the following chapters.

8 Non-Kolbe Electrolysis of Carboxylic Acids to Ethers, Esters, and Alcohols

Carboxylic acids with an electron donating substituent in the α -position decarboxylate in a two-electron oxidation to carbocations (see chap. 7). These can react with the solvent (alcohol, acetic acid, water) or the unreacted carboxylate to ethers, esters, or alcohols (Eq. 14). In some cases the carbon skeleton rearranges, which is a clear indication of the cationic pathway.

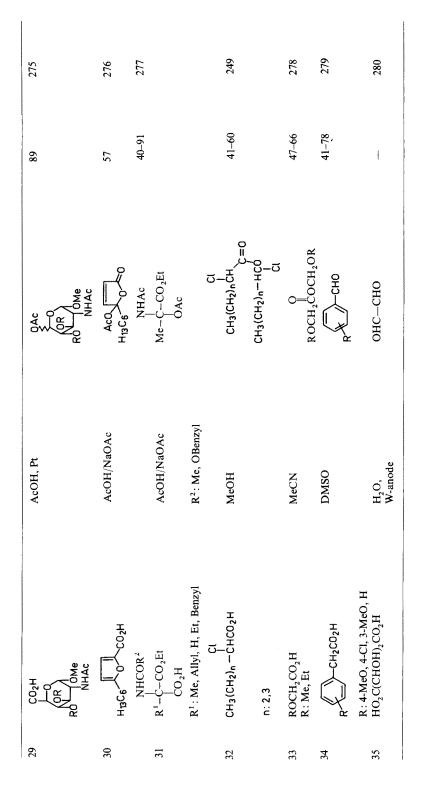
$$R^{2} \xrightarrow[-CO_{2}]{R^{2}} \xrightarrow{R^{2}} R^{2} \xrightarrow{R^{2}} R^{2} \xrightarrow{R^{2}} I \xrightarrow{R^{2}} I$$

 $SO = CH_3O$, CH_3CO_2 , HO

	The second second and the second	continue to colto mana actor was fo			
No.	Carboxylate	Conditions	Product	Yield (%)	Ref.
- 7	Adamantane-1 -carboxylic acid Homoadamantane-1 -carboxylic acid	MeOH or EtOH, Pt MeOH or EtOH, Pt	l-methoxy-, or l-ethoxy-adamantane l-methoxy-, or l-ethoxy homo- adamantane	50	248, 255 a,b 255 c
б	exo-or endo-	MeOH, Pt	DMe	35-40	242c
4	C6H5 C02H	MeOH, Pt	C6H5 OMe	33	256
s	H_CO2H	МеОН	Оме	100	96
9	$Ph_2C=C < CO_2Et CH_2CO_2H$	EtOH	$Ph_2C=C CO_2Et CH_2OEt$	69	257
			$Ph_2C - C < CO_2Et CH_{\underline{f}}$	12	
r 8 6	œ-Methoxyphenylacetic acid œ-Methoxydiphenylacetic acid œ-Ethoxy-4-nitrophenylacetic acid	MeOH MeOH MeOH	benzaldehyde dimethylacetal benzophenone dimethylacetal 4-nitrobenzaldehyde methyl	62 74 50	258 258 259
10	Triphenylacetic acid Diphenylacetic acid	McOH McOH, Et _a N	etbylacetal triphenylmethyl methyl ether methyl benzhydryl ether	60 80	260 261
12	$R^{1}R^{2}R^{3}CCOCO_{2}H$ $R^{1} = R^{2} = R^{3} = CH_{3}$ $R^{1} = R^{2} = R^{3} = C_{5}H_{11}$	MeOH, Pt	R ¹ R ² R ³ CCO ₂ CH ₃	5060	262

Table 9. Preparation of ethers, esters and alcohols by non-Kolbe electrolysis of carboxylates

Hans-Jürgen Schäfer


13	(согн	MeOH, NH ₄ Br, Et ₃ N, C	CH (OMe)2 CO2Me	78	263
14	Со-согн	MeOH, Et ₃ N, Et ₄ NCIO ₄ , Pt	СН(ОМе)2 	84	264
15 16 17	Phenylacetic acid Ph ₂ C(SPh)CO ₂ H PhSO ₂ CH ₂ CO ₂ H	PyrMeOH, C MeOH MeOH	benzyl methyl ether benzophenone dimethylacctal PhSO ₂ CH ₂ OMe	93 64 57	119 265 266
18	CO2H	МеОН	OMe	56	242 c
19	1, 502 Ph	МеОН	Me0 Moso2Ph	49	266
20	o co ₂ H co ₂ H	M€OH, K₂CO₃, Pt	exolendo: 2/1 orre OMe	6790	267
21	$R = Allyl, CH_2 - CH = CHMe,$ $CH_2 - CMe = CH_2$ $CH_3(CH_2)_n CH - CO_2 H$ SPh	MeOH, LÍCIO4, Pt	CH ₃ (CH ₂) _n CH(OMe) ₂	72–98	268
22	n = 2,7 R ¹ CONHCHR ² CO ₂ H R ¹ : Ph, Me, PhCH ₂ R ² : H, Me	R³OH R³: Me, Et, iPr, CH ₃ CO	R ¹ CONHCHR ² OR ³	38–91	269

Recent Contributions of Kolbe Electrolysis to Organic Synthesis

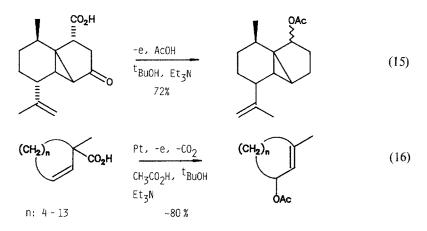
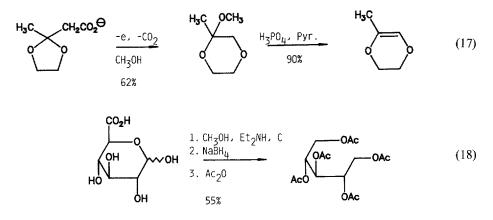
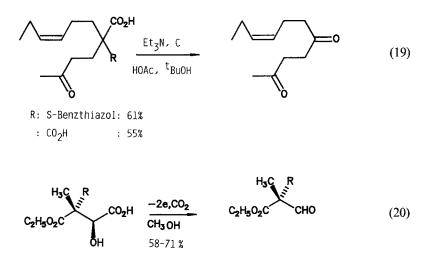

119

Table	Table 9. continued				
No.	Carboxylate	Conditions	Product	Yield (%)	Ref.
23	ÇO ₂ Et R ¹ Ç-CO ₂ H	R²OH	CO_2Et R^1C-OR^2	79–96	270
	NHCOMe R ¹ : H, Me, Et Prop, PhCH ₂	R ² : Me, Et ¹ Prop, CH ₃ CO	NHCOM€		
24	Ph CO2 Et CO2 H	McOH	Ph CO2Et	86	271
25	C0CH3 <i>p</i> -NO ₂ -C ₆ H4CO-D,L-Val-OH	Но≎М	CUCH₃ p-NO2C ₆ H₄CONH—CH(OM€)CHMe₂35	le ₂ 35	272
26	ZNH H CO2H	МеОН	ZNH A N-MOME		273
27	Z: PhCH ₂ O ₂ C: R ¹ :H, ¹ Prop HO ₂ C(N) R ²	H0₅M	Me0 Me0 Mr		274 a
	R': SiMe2 ^r But, R ² : CO2Me HO2C ^{m/} N COCH ₃	McOH, Pt	HO HO COCH3	26	274 b

120

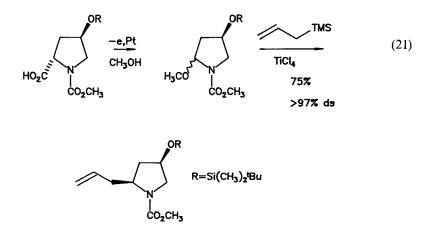


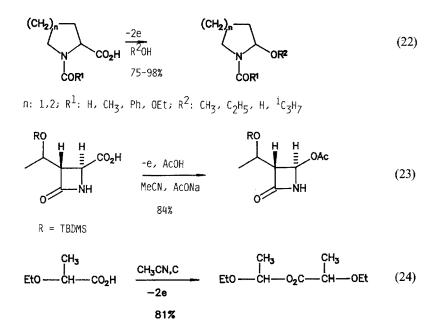
Recent Contributions of Kolbe Electrolysis to Organic Synthesis



In this way bridgehead carboxylates have been converted into the corresponding ethers (Table 9, Nos. 1–2). Both *exo-* and *endo-*2-norbornylcarboxylic acid yield the *exo-*2-methyl ether indicating that a bridged norbornyl cation is the intermediate (Table 9, No. 3). Steric reasons can prevent the rearrangement as in the conversion of the tricyclic carboxylic acid to the corresponding acetate (Eq. 15) [281]. In other cases the intermediate cyclopropylcarbinyl cation undergoes rearrangement (see also chap. 11). Carboxylic acids formed by a Stobbe condensation can react to an allyl cation that solvolyses in the 1- and 3-position (Table 9, No. 6). In some cases the allyl cation undergoes a regioselective acetolysis (Eq. 16) [282]. In the norbornenyl system the intermediate cation can add intramolecularly to the double bond leading to nortricyclene derivatives (Table 9, Nos. 18, 19).

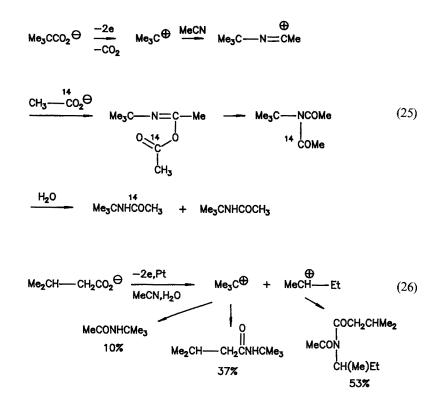
 α -Phenyl substituted carboxylic acids react selectively, because the intermediate phenylmethyl cations cannot undergo elimination or rearrangement (Table 9, Nos. 4, 7–11, 15). α -Ketoesters can be converted to esters possibly via intermediate acylium cations (Table 9, No. 12). The α -alkoxy group is very effective in directing the decarboxylation towards the cation, whose solvolysis leads to acetals (Table 9, Nos. 13, 14, 20, 28, 29, 32). Cyclic ketals of β -ketocarboxylic acids react to 2-methoxy-1,4-dioxenes (Eq. 17) [283]. Uronic acid has been converted to a pentaacetate (Eq. 18) [275].




Recent Contributions of Kolbe Electrolysis to Organic Synthesis

 $R=C_2H_5$, $CH_2CH=CH_2$, $CH_2C_8H_5$

2-Furane carboxylic acids are first oxidized to the 1,4-dimethoxy compound and then decarboxylated (Table 9, Nos. 13, 14, 30). The current density and thus the potential at the cathode can determine whether (Table 9, No. 13) or not (Table 9, No. 14) a subsequent reductive hydrogenation at the cathode occurs. The thio- and even the sulfonyl group can promote the further oxidation to the cation (Table 9, Nos. 16, 17, 21) leading to acetals in these cases. When this reaction is combined with an α -alkylation the α -thio carboxylic acid can be used as a d₁-synthon (Eq. 19) [284a-c]. The malonate unit can be employed in the same way (Eq. 19) [284d]. (S)-Malic-acid derivatives are transformed into enantiomerically pure alkylmalonaldehyde esters (Eq. 20) [285]. Many examples are reported for the decarboxylation of α -amino acids to the corresponding amino acetals (Table 9, Nos. 22–27, 31).



4-Hydroxy-L-prolin is converted into a 2-methoxypyrrolidine. This can be used as a valuable chiral building block to prepare optically active 2-substituted pyrrolidines (2-allyl, 2-cyano, 2-phosphono) with different nucleophiles and employing TiCl₄ as Lewis acid (Eq. 21) [286]. Using these latent *N*-acylimmonium cations (Eq. 22) [287] (Table 9, No. 31), 2-(pyrimidin-1-yl)-2-amino acids [288], and 5-fluorouracil derivatives [289] have been prepared. For the synthesis of β -lactams a 4-acetoxyazetidinone, prepared by non-Kolbe electrolysis of the corresponding 4-carboxy derivative (Eq. 23) [290], proved to be a valuable intermediate. *O*-Benzoylated α -hydroxyacetic acids are decarboxylated in methanol to mixed acylals [291]. By reaction of the intermediate cation, with the carboxylic acid used as precursor, esters are obtained in acetonitrile (Eq. 24) [292] and surprisingly also in methanol as solvent (Table 9, No. 32). Hydroxy compounds are formed by decarboxylation in water or in dimethyl sulfoxide (Table 9, Nos. 34, 35).

The various carbenium ions: *tert*-alkyl, bridgehead-, norbornyl-, allyl-, benzyl- or cyclopropylcarbinyl-cations, which are assumed to be intermediates in these decarboxylations are compiled in ref. [293].

9 Non-Kolbe Electrolysis of Carboxylic Acids to Acetamides

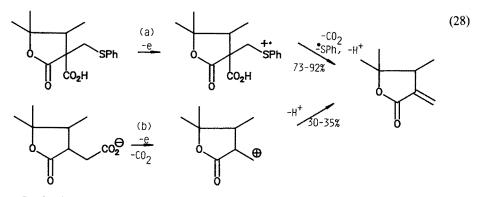
Non-Kolbe electrolysis of carboxylic acids in acetonitrile/water leads to acetamides as main products [294] (Table 10). The mechanism has been investigated by using ¹⁴C-labeled carboxylic acids. The results are rationalized by assuming a reaction layer rich of carboxylate resulting in the formation of a diacylamide that is hydrolyzed (Eq. 25) [295]. A similar mechanism has also been proposed for the electrolysis of isobutyric and pivalic acid in acetonitrile [296]. As the intermediate alkyl cation can rearrange and the intermediate iminium cation can furthermore react with the starting carboxylic acid three different amides can be isolated (Eq. 26) [295a]. The portion of the diacylamide can be considerably increased if the electrolyte consists of acetonitrile/ acetic acid [295b].

At a graphite anode and with potassium valerate analogous products were obtained, the yields were at a maximum with a water content between 10% and 30%. When the percentage of water was increased, larger amounts of butanols were formed. With increasing chain length of the carboxylic acid $CH_3(CH_2)_nCO_2H$ (n: 6, 10) the amount of amide found decreased and the Kolbe dimer became the major product. This has been attributed to a higher concentration of carboxylates at the electrode surface due to a stacking effect, whereby radical coupling is favoured [52].

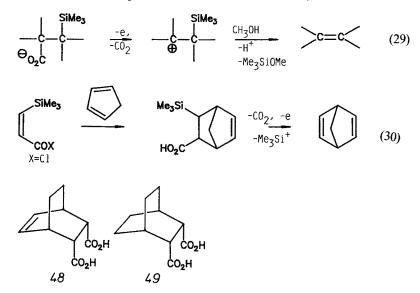
The rearrangement of the intermediate alkyl cation by hydrogen or methyl shift and the cyclization to a cyclopropane by a CH-insertion has been studied by deuterium labelling [298]. The electrolysis of cyclopropylacetic acid, allylacetic acid or cyclobutanecarboxylic acid leads to mixtures of cyclopropylcarbinyl-, cyclobutyl- and butenylacetamides [299]. The results are interpreted in terms of a rapid isomerization of the carbocation as long as it is adsorbed at the electrode, whilst isomerization is inhibited by desorption, which is followed by fast solvolysis. Recent Contributions of Kolbe Electrolysis to Organic Synthesis

No.	Carboxylic acid	Product	Yield (%)	Ref.
12	Me ₃ CCO ₂ H Me ₂ CCO ₂ Me	Me ₃ CNHCOCH ₃ Me ₂ C–CO ₂ Me	40, 80 25	294a, 295 294a
	Me ₂ CO ₂ H	Me ₂ C–NHCOMe		
3	CH ₃ CO ₂ H	CH3 NHCOCH3	68	295
4 5	C ₂ H ₅ C(CH ₃) ₂ CO ₂ H (CH ₃),CHCO ₂ H	C ₂ H ₅ C(CH ₃) ₂ NHCOCH ₃ (CH ₃) ₂ CH—N—COCH ₃	63 50	295 295, 296
5	(CH ₃) ₂ CHCO ₂ H	COCH(CH ₃) ₂ en=N=COCH ₃	50	275, 276
6	CO2H			54
		$R^1 = H, R^2 = 2$	20	
		$R^1 = CH_3CO, R^2 = \bigcirc -CO$	45	
		$R^1 = CH_3CO, R^2 = H$	20	
7	0 Me R ¹ -C-C-C0 ₂ H R ²	O Me II I R ¹ -C-C-NHCOR ³ R ²	18–50	104 b
	$R^{1} = Me, i-Prop$ $R^{2} = Me, Et$ $R^{3} = Me, Et, i-Prop$			
8		NHCOMe	35	297

Table 10. Acetamides by non-Kolbe electrolysis of carboxylates in acetonitrile

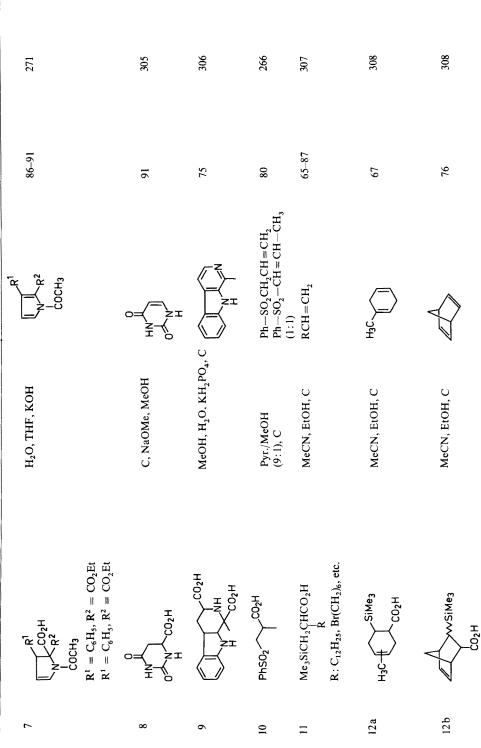

10 Conversion of Carboxylic Acids into Olefins by Non-Kolbe Electrolysis

Carboxylic acids can be converted into olefins, when there is a leaving group such as H (Eq. 27), SiMe₃, SPh or CO_2H in the β -position. The olefin is formed, when the carbocation, that is generated by decarboxylation, undergoes a subsequent E1-elimination. Some examples are summarized in Table 11 (Nos. 1–10).


$$\Theta_{0_2 c} > c - c \stackrel{H}{\leftarrow} \frac{-2e}{-c0_2} \stackrel{c}{\rightarrow} c \stackrel{H}{\leftarrow} \frac{-H^{p}}{-c}$$
 (27)

~

Reaction No. 5 (Table 11) is part of a synthetically useful method for the alkylation of aromatic compounds. At first the aromatic carboxylic acid is reductively alkylated by way of a Birch reduction in the presence of alkyl halides, this is then followed by an eliminative decarboxylation. In reaction No. 9 decarboxylation occurs probably by oxidation at the nitrogen to the radical cation that undergoes decarboxylation (see pseudo-Kolbe electrolysis, chap. 14). Such a mechanism seems also to be involved in the decarboxylation/desulfenylation (Eq. 28) [318]. There sulfur appears to be oxidized to a radical cation that cleaves to the *exo*-methylene lactone, carbon dioxide a proton and a thiyl radical (reaction a); in the direct electrolysis the yield is much lower (reaction b). In the eliminative decarboxylations of cycloalkanecarboxylic acids (seven- to eleven-membered rings), besides the 1,2-elimination, a 1,3-elimination to cyclopropanes and a transannular 1,5-elimination occur to some extent [247, 319].


In β -trimethylsilylcarboxylic acids the non-Kolbe electrolysis is favored as the carbocation is stabilized by the β -effect of the silyl group. Attack of methanol at the silyl group subsequently leads in a regioselective elimination to the double bond (Eq. 29) [307, 308]. This reaction has been used for the construction of 1,4-cyclohexadienes. At first Diels-Alder adducts are prepared from dienes and β -trimethylsilyl-acrylic acid as acetylene-equivalent, this is then followed by decarboxylation-desilylation (Eq. 30) [308]. Some examples are summarized in Table 11, Nos. 12–13.

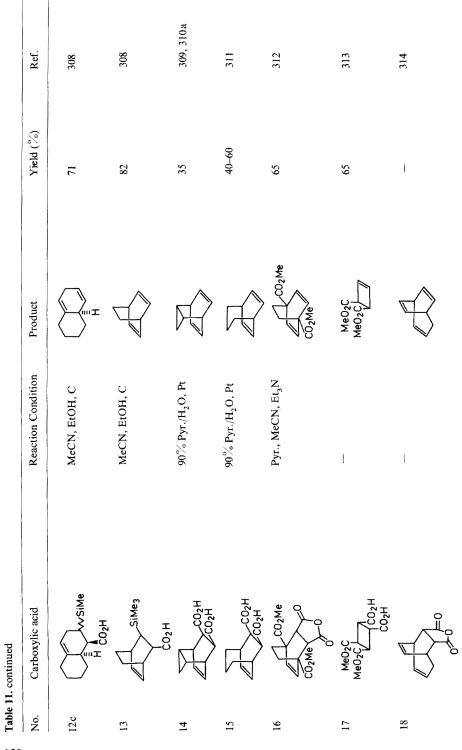
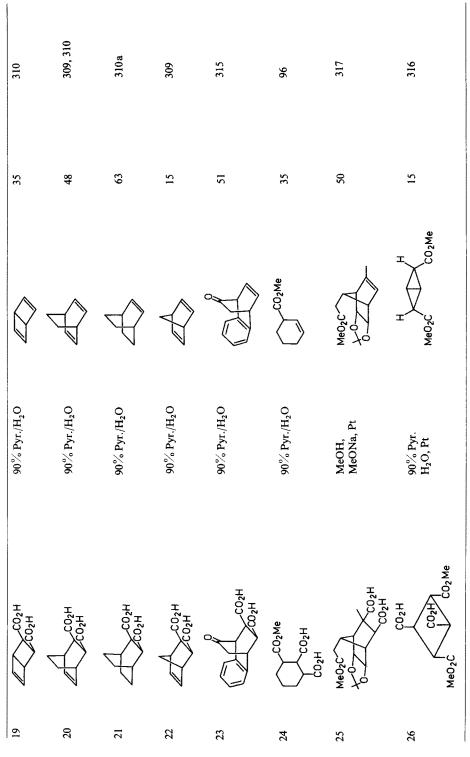
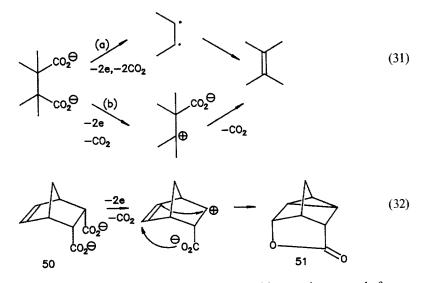

Bisdecarboxylation of vicinal dicarboxylates is the older method of converting vicinal diacids into olefins. The reaction can be combined with a [4 + 2]- or [2 + 2]-

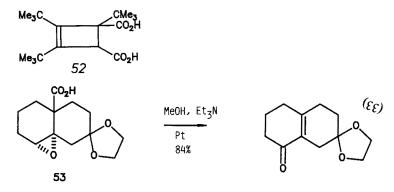
Table 11.	Table 11. Conversion of Carboxylic acids into Olefins				
No.	Carboxylic acid	Reaction Condition	Product	Yield (%)	Ref.
-	MeCOC(CH ₃) ₂ CO ₂ H	H ₂ 0, KOH	$MeCOC(CH_3) = CH_2$	60	104b, 303
6	CO2H	н ² о Кон	CCH2)4 Br	50	104 b, 303
m	HO I FOR THE CO2H	Pyr./H2O, Et ₃ N, C		5763	300
4	CO2H	Pyr./H ₂ O, Et ₃ N, Pt		16	301
Ś	$R^{1} \xrightarrow{CO_{2}H} R^{2} \xrightarrow{R^{2}-R^{3}} R^{3} R^{$	MeOH, MeONa	R ² R ² R ³	60–70	302
و	$R^{1} = Me (CH_{2})_{4}$, $R^{2} = R^{3} = OMe$ $H_{5}C_{6}$ N_{N} $C_{6}H_{5}$	CH3OH, Et4NBF4	H5C6	86	304


128

129



130

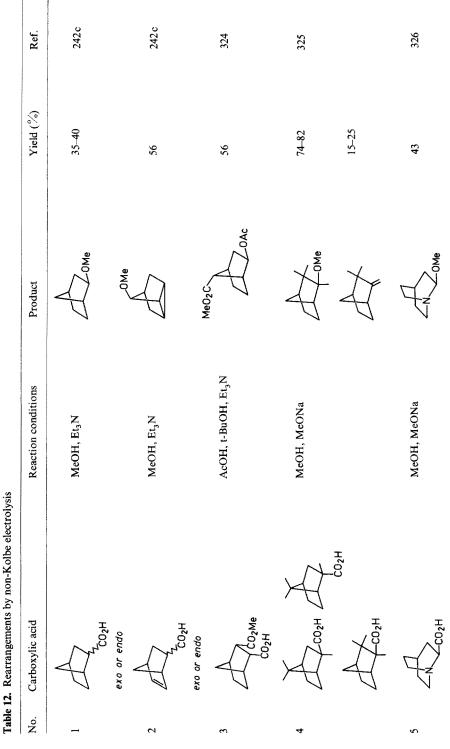

cycloaddition, e.g. with maleic anhydride, whereby unsaturated polycyclic hydrocarbons can be prepared in a few steps (Table 11, Nos. 14-25). 90% Pyridine: triethylamine:water as electrolyte, and platinum as electrode appear to favor this elimination. The optimum choice of conditions has been discussed in ref. [315]. The addition of the radical scavenger 4-tert-butyl-catechol to the electrolyte can improve the yield [312]. The anodic bisdecarboxylation is in most cases better than the corresponding oxidation with lead tetraacetate. When reaction No. 14 (Table 11) is conducted with lead tetraacetate only $3^{\circ}/_{0}$ of the product is yielded, sometimes, however, both methods are equivalent [320a]. For the dicarboxylic acids 48 and 49 the influence of the solvent, electrode material, current density, the kind of base and additives have been studied systematically [320b]. Out of the solvents acetonitrile, dimethylformamide, sulfolane, pyridine, 2,6-lutidine or pyridine/water (1:9) the latter leads to the highest yields and lowest passivation. From the anode materials platinum, gold, lead dioxide, graphite or glassy carbon the highest yields are obtained with platinum. At graphite, double bonds are apparently additionally oxidized. Higher current densities also support the reaction. The structure of the base (triethylamine or 1,4-diazabicyclo[2.2.2]octane) influences strongly the degree of passivation but not the yield. Addition of copper(II)acetate lowers the yield, that of lithium perchlorate inhibits the reaction.

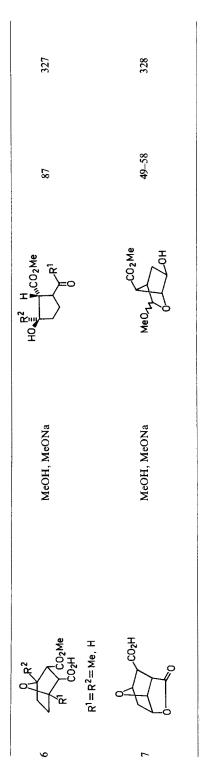
As the mechanism, a radical and a cationic pathway are conceivable (Eq. 31). The stereochemical results with *rac-* or *meso-1,2-*diphenyl succinic acid, both yield only *trans-stilbene* [321], and the formation of a tricyclic lactone **51** in the decarboxylation of norbornene dicarboxylic acid **50** (Eq. 32) [309] support a cation (path b, Eq. 31) rather than a "biradical" as intermediate (path a).

However, the inhibition of the reaction by lithium perchlorate, that strongly favors the cationic pathway (see chap. 2, 7), contradicts this assumption. With regard to yield and the degree of passivation the decarboxylation/desilylation appears to be a better choice than the bisdecarboxylation for the construction of unsaturated polycyclic compounds (see for example Table 11, No. 12b and No. 22).

In the bisdecarboxylation of the cyclobutenedicarboxylic acid **52**, products are obtained whose formation possibly involves a cyclobutadiene intermediate [322]. A case of a 1,3-bisdecarboxylation has been reported in the preparation of a bicyclobutane (Table 11, No. 26). An elimination, that involves the cleavage of an carbon-oxygen bond after the decarboxylation, has been observed with the carboxylic acid **53** (Eq. 33) [282].

11 Rearrangement of Intermediate Carbocations in Non-Kolbe Electrolysis

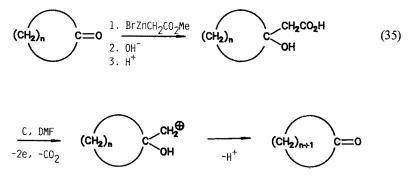

The carbocations generated by non-Kolbe electrolysis can rearrange by alkyl, phenyl or oxygen migration. The migratory aptitudes of different alkyl groups have been studied in the rearrangement of α -hydroxy carboxylic acids (Eq. 34) [323].


$$\begin{array}{c} \mathsf{OH} & \mathsf{OH} & \mathsf{OH} \\ \mathsf{R}^{\mathsf{I}}\mathsf{R}^{\mathsf{I}}\mathsf{C}^{\mathsf{--}}\mathsf{CH}_{2}\mathsf{CO}_{2}^{\mathsf{O}} & \frac{-2\mathbf{e}}{-\mathsf{CO}_{2}} & \mathsf{R}^{\mathsf{I}}\mathsf{R}^{\mathsf{I}}\mathsf{C}^{\mathsf{--}}\mathsf{CH}_{2}^{\mathsf{O}} & \frac{-\mathsf{H}^{\mathfrak{O}}}{-\mathsf{H}^{\mathfrak{O}}} & \mathsf{R}^{\mathsf{I}}\mathsf{C}^{\mathsf{--}}\mathsf{CH}_{2}^{\mathsf{--}} \\ \mathsf{R}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} & \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} & \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} \\ \mathsf{R}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} & \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} & \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} & \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} & \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} & \mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}}\mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I} \\ \mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}} \\ \mathsf{C}^{\mathsf{I}}$$

Migratory aptitude: vinyl > iso-propyl > cyclopropyl > benzyl

Rearrangements in the course of a decarboxylation can be taken as strong indicator for the involvement of carbocations. Anodic oxidation of *exo*- or *endo*- norbornane-2-carboxylic acid produced in both cases only the *exo*-norbornyl methyl ether (Table 12, No. 1) [242 c]. *Exo*- or *endo*-5-norbornene-2-carboxylic acid react by double bond participation and subsequent rearrangement to 3-methoxynortricyclene (Table 12, No. 2). The kind of products was the same as obtained in solvolysis [329]. The product in reaction No. 3 (Table 12), has been used as intermediate for a methyl (\pm) -jasmonate synthesis. The three isomeric carboxylic acids in reaction No. 4 (Table 12) decarboxylate by rearrangement to the same product mixture. An analogous observation is made for the anodic oxidation of cyclopropylacetic acid, cyclobutylcarboxylic acid and allylacetic acid [252]. The anodic oxidation of cyclopropylcarboxylic acid can lead to Kolbe dimers (see chap. 4) and/or cationic products by ring opening to an allyl cation that undergoes methanolysis or acetolysis depending on the electrolyte [330].

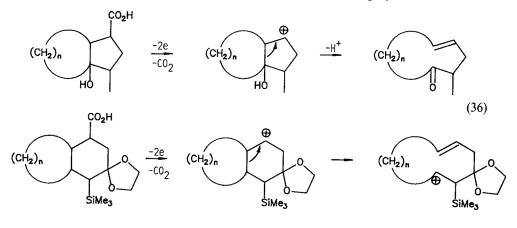
In the electrolysis of quinuclidine-2-carboxylic acid decarboxylation occurs without rearrangement (Table 12, No. 5). Stereospecifically substituted cyclopentanes, that

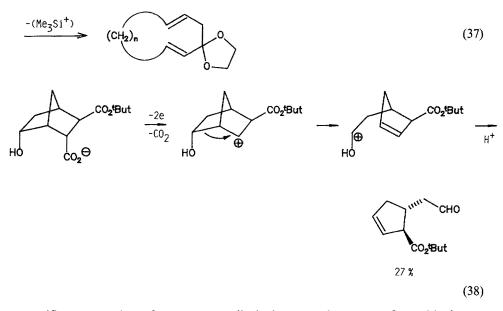


No.	Carboxylic acid	Products	Reaction conditions	Yield (%)	Ref.
1	(CH ₂) _n C CH ₂ CO ₂ H OH	(CH ₂) _{n+1} C=0	Pt, CH ₃ CN n = 4: n = 5: C, Pyr./H ₂ O	5463 5463	242 c 242 c
			n = 9: n = 11:	82 82	335 335
2	H OH CH2CO2H		C, DMF	56	336
3	H CH(Me)CO ₂ H H	$H \rightarrow H = H = H$	C, DMF	58	336
4	CH ₃ OH CH ₂ CO ₂ H				
	<	CH3	МеОН, КОН	30	323
	<		MeOH, KOH	5	

Table 13. Ring Extension o	f alicyclic β-hydroxycarboxylic acids	by non-Kolbe electrolysis
----------------------------	---------------------------------------	---------------------------

may serve as intermediates for the synthesis of cyclopentanoids, can be prepared by decarboxylation of oxa-bicycloheptanecarboxylic acids (Table 12, Nos. 6, 7). Migration of oxygen has been observed in the decarboxylation of glycidic acids [331, 332] and acetals of β -oxocarboxylic acids [333]. Rearrangement of the phenyl group was encountered in the decarboxylation of 3,3-diphenylpropionic acid, which afforded in acetic acid 1,2-diphenylethylacetate as the major product [334].

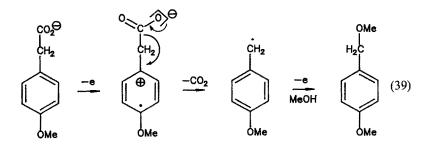

Non-Kolbe electrolysis of alicyclic β -hydroxy carboxylic acids offers interesting applications for the one-carbon ring extension of cyclic ketones (Eq. 35) [242 c]. The starting compounds are easily available by Reformatsky reaction with cyclic ketones. Some examples are summarized in Table 13. Dimethylformamide as solvent and graphite as anode material appear to be optimal for this reaction.



With unsymmetrical cyclic ketones, however, mixtures due to similar migratory aptitudes of the different groups are obtained (Table 13, Nos. 2, 3). The rearrangement has also been used as key step in a d,l-muscone synthesis (Table 13, No. 4).

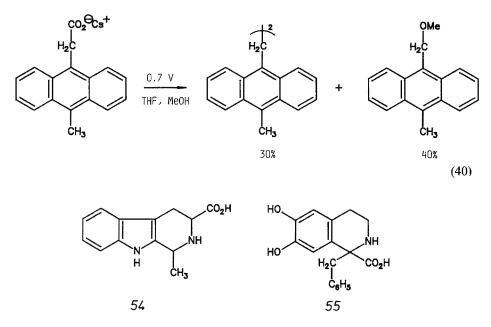
12 Fragmentation of Carboxylic Acids by Non-Kolbe Electrolysis

Non-Kolbe electrolysis of carboxylic acids can be directed towards a selective fragmentation, when the initially formed carbocation is better stabilized in the γ -position by a hydroxy or trimethylsilyl group. In this way the reaction can be used for a three-carbon (Eq. 36) [335] (Table 14, No. 1) or four-carbon ring extension (Eq. 37) [27] (Table 14, Nos. 2–4). Furthermore it can be employed for the stereo-



specific construction of *cis*- or *trans*-disubstituted cyclopentenes from 6-hydroxynorbornane-2-carboxylic acids (Eq. 38) [338] (Table 14, Nos. 5, 6). Similarly it has been used for a stereospecific synthesis of a tetraalkylcyclohexane (Table 14, No. 7). The anodic fragmentation of α -acyloxycarboxylic acids: RCO₂CR¹R²CO₂H (R = Me, EtO; R¹, R² = H, Me, Ph) yields ketones R¹COR² and products derived from acyl cations: RCO⁺ [341].

13 The Pseudo-Kolbe Reaction


Pseudo-Kolbe electrolysis is the name given to anodic decarboxylations where the electron transfer does not occur from the carboxylate but from a group attached to it [31]. These oxidations are characterized by potentials that are much lower than the critical potential for the Kolbe electrolysis. The salt of *p*-methoxyphenylacetic acid can be oxidized in methanol to afford the corresponding methyl ether as the sole product. The low oxidation potential of 1.4 V (sce) suggests, that the electron is being transferred from the aromatic nucleus (Eq. 39) [31].

No.	Carboxylic acid	Reaction conditions	Product	Yield (%)	Ref.
1	(H ₂ C) _n OH CH ₃	C-anode, MeCN/EtOH, 100% neutralization	$(CH_2)_n$ $(CH_3)_n$	n = 3 6 n = 4 47 n = 10 8	335
			(CH ₂) _n OH	n = 3 39 n = 4 15 n = 10 52	
2		МеОН		44 35	337 335
3	CO ₂ H CO ₂ H CO ₂ H CO ₂ H CO ₂ H CO ₂ H	CH ₃ CN/EtOH		85	27
4	SiMe ₃ 0 COOH	CH ₃ CN/EtOH		70	27
5	ОТНР	C-anode, MeCN/EtOH	СНО	38	338
ō	O SO2Ph CO2H	MeOH, C-anode	CO ₂ Me SO ₂ Ph	63	338
7	CO ₂ H	MeOH, Pt		3438	339
3	HO HO	MeOH, NeONa	СНО	53	340
	HU CTHP		OH OH	17	

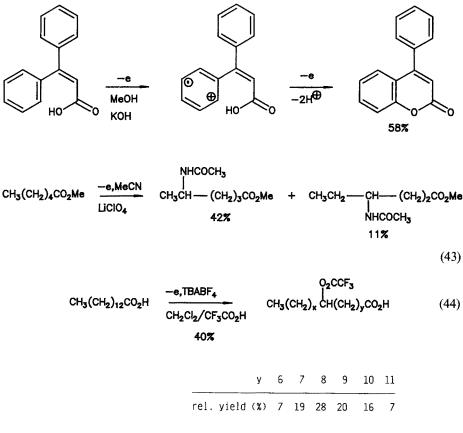
Table 14. Fragmentation of carboxylic acids by non-Kolbe electrolysis

* After hydrogenation of the product

The decarboxylation of the caesium salt of 9-methylanthracene-10-acetic acid occurs at an even lower potential (0.7 V) and affords the dimer as well as the methyl ether (Eq. 40) [342]. The low oxidation potentials for the decarboxylation of **54** (0.13 to 0.77 V) [306a] and **55** (-0.17 V) [306b] indicate too, that the initial electron transfer occurs from the amino or aryl group rather than from the carboxylate.

14 The Photo-Kolbe Reaction

$$RCO_2^{\Theta} \longrightarrow RCO_2^{\Theta} + e^{\Theta} - R^{\Theta} + CO_2 + e^{\Theta} R^{\Theta} + \frac{H^{\Theta}}{R^{\Theta}} R^{H}$$
(41)


The photo-Kolbe reaction is the decarboxylation of carboxylic acids at low voltage under irradiation at semiconductor anodes (TiO_2) , that are partially doped with metals, e.g. platinum [343, 344]. On semiconductor powders the dominant product is a hydrocarbon by substitution of the carboxylate group for hydrogen (Eq. 41), whereas on an n-TiO₂ single crystal in the oxidation of acetic acid the formation of ethane besides methane could be observed [345, 346]. Dependent on the kind of semiconductor, the adsorbed metal, and the pH of the solution the extent of alkyl coupling versus reduction to the hydrocarbon can be controlled to some extent [346]. The intermediacy of alkyl radicals has been demonstrated by ESR-spectroscopy [347], that of the alkyl anion by deuterium incorporation [344]. With vicinal diacids the mono- or bisdecarboxylation can be controlled by the light flux [348]. Adipic acid yielded butane [349] with levulinic acid the products of decarboxylation, methyl ethyl-

ketone, and of CC-bond cleavage, propionic acid, acetic acid, acetone, acetaldehyde were found. These can subsequently undergo decarboxylation to ethane and methane. The product distribution is a complex function of the phase of $n-TiO_2$ and the level of metalization of the semiconductor powder [350]. Preparative applications of the method have not been reported yet. The reaction seems attractive for several reasons. It needs only a low discharge potential, sun light is sufficient for irradiation and the carboxylgroup can be substituted for hydrogen. The latter cannot be achieved by Kolbe electrolysis and needs more steps, if the conversion is done by chemical methods. However, up to now the yields in photo-Kolbe electrolysis are very low.

15 Anodic Oxidation of Carboxylic Acids Without Decarboxylation

In carboxylic acids with an aromatic group or a double bond the π -systems can be oxidized to radical cations that react with the carboxyl group to lactones (Eqs. 7, 42) [142, 351].

In solvents that strongly resist anodic oxidation as MeCN, CH_2Cl_2/CF_3CO_2H , or FSO_3H CH-bonds in the alkyl chain can be oxidized. In acetonitrile a preferential acetamidation in the (ω -2)- and (ω -1)-position occurs (Eq. 43) [352].

141

In methylenechloride/trifluoroacetic acid or fluorsulfonic acid trifluoracetoxylation (Eq. 44) [353] or fluorsulfonation [354] of the alkyl chain remote from the protonated carboxyl group occurs.

16 Conclusions

Carboxylic acids can be converted by anodic oxidation into radicals and/or carbocations. The procedure is simple, an undivided beaker-type cell to perform the reaction, current control, and usually methanol as solvent is sufficient. A scale up is fairly easy and the yields are generally good. The pathway towards either radicals or carbocations can be efficiently controlled by the reaction conditions (electrode material, solvent, additives) and the structure of the carboxylic acids. A broad variety of starting compounds is easily and inexpensively available from natural and petrochemical sources, or by highly developed procedures for the synthesis of carboxylic acids.

By the radical pathway 1,*n*-diesters, -diketones, -dienes or -dihalides, chiral intermediates for synthesis, pheromones and unusual hydrocarbons or fatty acids are accessible in one to few steps. The addition of the intermediate radicals to double bonds affords additive dimers, whereby four units can be coupled in one step. By way of intramolecular addition unsaturated carboxylic acids can be converted into five membered hetero- or carbocyclic compounds. These radical reactions are attractive for synthesis because they can tolerate polar functional groups without protection.

Possibly the use of fatty acids as renewable resources and alternative to petrochemical feed stocks can profit from the application of Kolbe electrolysis.

The cationic pathway allows the conversion of carboxylic acids into ethers, acetals or amides. From α -aminoacids versatile chiral building blocks are accessible. The eliminative decarboxylation of vicinal diacids or β -silyl carboxylic acids, combined with cycloaddition reactions, allows the efficient construction of cyclobutenes or cyclohexadienes. The induction of cationic rearrangements or fragmentations is a potent way to specifically substituted cyclopentanoids and ring extensions by oneor four carbons. In view of these favorable qualities of Kolbe electrolysis, numerous useful applications of this old reaction can be expected in the future.

17 Acknowledgement

My own contributions to this field rely heavily on the creative cooperation with enthusiastic coworkers who are cited in the references. I am indebted to generous financial support of our work by the Arbeitsgemeinschaft Industrieller Forschungsvereinigungen e. V., the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. Finally but not least, I am thankful to Mrs. Kölle and Mrs. Quiller, who typed the manuscript with care and patience.

18 References

- 1. Faraday M (1834) Pogg. Ann. 33: 438
- 2. Kolbe H (1849) Ann. 69: 257; (1860) 113; 125; (1874) J. Prakt. Chem. [2] 10: 89; (1875) 11: 24
- 3. Wurtz A (1855) Ann. Chim. Phys. 44: 291
- 4. Brown AC, Walker J (1891) Ann. Chem. 261: 107
- 5. Hofer H, Moest M (1902) Ann. Chem. 323: 284
- 6. Fichter F (1942) Organische Elektrochemie, Steinkopff, Dresden
- 7. Weedon BCL (1960) Adv. Org. Chem 1:1
- 8. a) Eberson L (1967) Electrochim. Acta 12: 1473
 b) (1968) Acta Chem. Scand. 22: 2462
 c) Eberson L (1963) Acta Chem. Scand. 17: 2004
- 9. Utley JHP (1974) In: Weinberg NL (ed) Technique of electroorganic synthesis, Wiley, vol. 5, Part 1, p 793
- 10. Vijh AK, Conway BE (1967) Chem. Rev. 67: 623
- 11. a) Beck F, Nohe H, Haufe J, Pat DE 2.023.080, BASF; (1972) CA 76: 45764n
 b) Eisele W, Nohe H, Suter H, Pat DE 2.039.991, BASF; (1972) CA 76: 120912q
 c) Beck F, Himmele W, Haufe J, Brunold A, Pat DE 1.643.693, BASF; (1977) CA 86: 54997
 d) Beck F (1973) Electrochim. Acta 18: 359
 a) Wavisch F, Nohe H, Suter H, Pat DE 2.249.562, BASE (1974) CA 91, 22626
 - e) Wenisch F, Nohe H, Suter H, Pat DE 2.248.562, BASF; (1974) CA 81: 32626x
- 12. a) Vassiliev YB, Kovsman EP, Freidlin GN (1982) Electrochim. Acta 27: 953
- b) Vassiliev YB, Kovsman EP, Freidlin GN (1982) Electrochim. Acta 27: 937
 13. a) Isoya T, Kakuta R, DE 2404359; Asahi Chem.; (1974) CA 81: 135475b
 b) Isoya T, Kakuta R, Kawamura C, DE 2404560; Asahi Chem.; (1975) CA 82: 49312k
 c) Yamataka K, Matsuoka Y, Isoya T, DE 2830144; Asahi Chem.; (1979) CA 90: 112142n
 d) Yamataka K, Isoya T, Kawamura C, DE 3019537; Asahi Chem.; (1981) CA 94: 73666x
- 14. Allen MJ (1958) Organic electrode processes, Reinhold, New York
- 15. Brockmann CJ (1926) Electroorganic chemistry, Wiley, New York, pp 23-78
- 16. Hickling A (1949) Q. Rev., Chem. Soc. 3: 95
- 17. Weinberg NL, Weinberg HR (1968) Chem. Rev. 68: 449
- 18. Eberson L (1969) In: Patai S (ed) Chemistry of carboxylic acids and esters, Interscience, 1969, p 53
- Eberson L, Utley JHP (1983) In: Baizer MM (ed) Organic electrochemistry, 2nd edn, Dekker, 1983, New York, p 435
- Ross SD, Finkelstein M, Rudd EF (1975) Anodic oxidation, Academic Press, Orlando London, pp 134, 156
- Eberson L, Nyberg K (1978) In: Bard AJ, Lund H (eds) Encyclopedia of electrochemistry of the elements, Dekker, 1978, New York, vol 12, p 261
- 22. Svadkovskaya GE, Voitkevich SA (1961) Russ. Chem. Rev. 29: 161
- 23. Schäfer HJ (1979) Chem. Phys. Lipids 24: 321
- 24. Baizer MM (1984) Tetrahedron 40: 935
- 25. Torii S (1985) Electroorganic syntheses, methods and applications, Pt. 1: Oxidation, VCH Publishers, Deerfield Beach, p 51
- 26. Schäfer HJ (1987) Recent advances in electroorganic synthesis, In: Torii S (ed) Proc. 1st Internat. Symposium on Electroorganic Synthesis, Kodansha, Tokyo, p 3
- 27. Schäfer HJ (1989) Dechema Monographie, VCH, Weinheim, vol 112, p 399
- 28. Dickinson T, Wynne-Jones WFK (1962) Trans. Faraday Soc. 58: 382, 388, 400
- 29. Ref. [18] p 58
- 30. Ref. [9] p 887
- 31. Coleman JP, Lines R, Utley JHP, Weedon BCL (1974) J. Chem. Soc., Perkin Trans. II: 1064
- 32. Haufe J, Beck F (1970) Chem.-Ing.-Techn. 42: 170
- 33. DOS 1802865 (1968) BASF; (1971) CA 74: 37822
- 34. Beck F, Nohe H, Haufe J, BASF, Germ. Offen. Nr. 2014,985; (1972) CA 76: 3402
- 35. a) Beck F (1973) Electrochim. Acta 18: 359
 b) Wenisch F, Nohe H, Hannebaum H, Horn RK, Stroezel M, Degner D (1979) AIChE Sym. Ser. 75: 14; (1979) CA 91: 65 193
 c) DOS 2014985 (1970) BASF; (1972) CA 76: 3402 n

- 36. Dinh-Nguyen N (1958) Acta Chem. Scand. 12: 585
- 37. Sanderson JE, Levy PF, Cheng LK, Barnard GW (1983) J. Electrochem. Soc. 130: 1844 38. a) Woolford RG (1962) Can. J. Chem. 40: 1846
- b) Woolford RG, Arbic W, Rosser A (1964) ibid 42: 1788
- 39. Fairweather DA, Walker OJ (1926) J. Chem. Soc. 3111
- 40. Glasstone S, Hickling A (1939) Chem. Rev. 25: 407
- 41. a) Avrutskaya IA, Fioshin MY (1966) Elektrokhimiya 2: 920; (1966) CA 65: 14838e
 b) Fioshin MY, Avrutskaya IA (1967) Elektrokhimiya 3: 1288; (1968) CA 68: 26297f
- 42. Fioshin MY, Vasilev YB, Gaginkina EG (1960) Doklady Akad. Nauk S.S.S.R. 135: 909; (1962) CA 56: 2273d
- 43. a) Swann S Jr. (1956) In: Weissberger A (ed) Technique of organic chemistry, 2nd edn, vol. II, Catalytic, Photochemical and Electrolytic Reactions, Wiley-Interscience, New York, p 385
 b) Renaud RN, Sullivan DE (1973) Can. J. Chem. 51: 772
- 44. Adamov AA, Kovsman EP, Freidlin GN, Tarkhanov GA (1975) Elektrokhimiya 11: 1773; (1976) CA 84: 58558
- 45. Garwood RF, Naser-ud-Din, Scott CJ, Weedon BCL (1973) J. Chem. Soc., Perkin Trans. 1: 2714
- 46. Rodewald LB, Lewis MC (1971) Tetrahedron 27: 5273
- 47. Kanevskii LS, Vasilev YB (1976) Elektrokhimiya 12: 1487; (1977) CA 86: 80805
- 48. Brennan MPJ, Brettle R (1973) J. Chem. Soc., Perkin Trans. I: 257
- 49. a) Linstead RP, Shephard BR, Weedon BCL (1951) J. Chem. Soc. 2854
 b) ibid. (1952) J. Chem. Soc. 3624
- 50. Rand L, Mohar AF (1965) J. Org. Chem. 30: 3156, 3885
- 51. a) Rudd EJ, Finkelstein M, Ross S (1972) J. Org. Chem. 37: 1763
 b) Bélanger G, Lamarre C, Vijh AK (1975) J. Electrochem. Soc. 122: 46
- 52. Muck DL, Wilson ER (1970) J. Electrochem. Soc. 117: 1358
- 53. Hawkes GE, Utley JHP, Yates GB (1976) J. Chem. Soc., Perkin Trans. II: 1709
- 54. Laurent A, Laurent E, Thomalla M (1972) C.R. Acad. Sci. Paris, Ser. C, 274: 1537
- 55. Gurjar VG (1978) J. Appl. Electrochem. 8: 207; (1978) CA 89: 82038t
- 56. Beck F (1974) Elektroorganische Chemie, VCH, Weinheim, Table 28, p 229
- 57. Tyurin JM, Kovsman EP, Karajewa EA (1965) Zh. Prikl. Khim. 38: 1818; (1966) CA 64: 3045
- 58. Sato N, Sekine T, Sugino K (1968) J. Electrochem. Soc. 115: 242
- Tourillon G, Dubois JE, Lacaze PC (1977) J. Chim. Phys. Phys.-Chim. Biol. 74: 685; (1977) CA 87: 174777v
- 60. Yoshizawa S, Takehara Z, Ogumi Z, Matsubara M (1975) Denki Kagaku 43: 526; (1976) CA 84: 81627
- 61. Ogumi Z, Yamashita H, Nishio K, Takehara Z, Yoshizawa S (1983) Electrochim. Acta 28: 1687
- 62. Kunugi A, Urata H, Nagaura S (1968) Denki Kagaku 36: 237; (1968) CA 69: 82878
- 63. a) Iwakura C, Goto F, Tamura H (1980) Denki Kagaku 48: 21; (1980) CA 93: 15655m
 b) Mirkind LA, Al'bertinskii GL (1980) Elektrokhimiya 16: 911; (1980) CA 93: 83496
 c) Mirkind LA, Al'bertinskii GL, Kornienko AG (1983) Elektrokhimiya 19: 122; (1983) CA 98: 115648
- 64. Walker OJ, Weiss J (1935) Trans. Faraday Soc. 31: 1011 and earlier papers
- 65. a) Glasstone S, Hickling A (1939) Chem. Rev. 25: 407
- b) Hickling A (1949) Quart. Rev. (London) 3:95
- 66. Schall C (1896) Z. Elektrochem. 3: 83
- 67. Ref. [9] p 796
- 68. Nadebaum PR, Fahidy TZ (1972) Electrochim. Acta 17: 1659
- 69. Ref. [20] p 139
- 70. Ref. [19] p 442
- 71. Ref. [9] p 886
- 72. Ref. [56] p 227
- 73. a) Fleischmann M, Mansfield JR, Wynne-Jones WFK (1965) J. Electroanal. Chem. 10: 511, 522
 b) Fleischmann M, Goodridge F (1968) Discuss. Faraday Soc. 45: 254
- 74. a) Wilson CL, Lippincott WT (1956) J. Am. Chem. Soc. 78: 4290
 b) Hickling A, Wilkins R (1986) Discuss. Faraday Soc. 45: 261; (1968) CA 69: 112843h

- 75. Koch DFA, Woods R (1968) Electrochim. Acta 13: 2101
- 76. Cervino RM, Triaca WE, Arvia AJ (1984) J. Electroanal. Chem. 172: 255
- 77. Conway BE, Vijh AK (1967) J. Phys. Chem. 71: 3637, 3655
- 78. a) Conway BE, Dzieciuch M (1963) Can. J. Chem. 41: 21, 38, 55
- b) Fairweather DA, Walker OJ (1931) Trans. Faraday Soc. 27: 722
- 79. a) Dubinin AG, Mirkind LA, Kazarınov VE, Fioshin MY (1979) Elektrokhimiya 15: 1337; (1979) CA 91: 165527
 b) Yakovleva AA, Kaidalova SN, Skuratnik YB, Veselovskii VI (1972) Elektrokhimiya 8: 1799; (1973) CA 78: 78958
- 80. Shaw JW, Nonaka T, Chou TC (1985) J. Chin. Inst. Chem. Eng. 16: 245; (1986) CA 104: 12183r
- 81. a) Pande GS, Shukla SN (1961) Elektrochim. Acta 4: 215
 b) Fioshin MY, Vasilev YB (1963) Izvest. Akad. Nauk SSR 437; (1963) CA 59: 8359f
 c) Dickinson T, Wynne-Jones WFK (1962) Trans. Faraday Soc. 58: 382; (1962) CA 57: 10925e
 d) Vijh AK, Conway BE (1967) Z. Anal. Chem. 230: 81
- 82. Sugino K, Sekine T, Sato N (1963) Electrochem. Technol. 1: 112; (1963) CA 58: 10972h
- 83. Girina GP, Fioshin MY, Kazarinov VE (1965) Elektrokhimiya 1: 478; (1963) CA 63: 9453h
- 84. a) Conway BE, Dzieciuch M (1962) Proc. Chem. Soc. 121; (1963) CA 61: 308b
 b) Conway BE, Dzieciuch M (1963) Can. J. Chem. 41: 38, 55
- 85. Conway BE, Liu TC (1988) J. Electroanal. Chem. 242: 317
- 86. Bewick A, Brown DJ (1976) Electrochim. Acta 21: 979
- 87. Bruno F, Dubois JE (1972) Electrochim. Acta 17: 1161
- 88. Russell CD (1976) J. Electroanal. Chem. 71: 81
- 89. Gilbert BC, Holmes RGG, Marshall PDR, Norman ROC (1977) J. Chem. Res. (S) 172
- 90. Sasaki K, Uneyama K, Nagaura S (1966) Electrochim. Acta 11: 891
- 91. Conway BE, Vijh AK (1967) Electrochim. Acta 12: 102
- 92. Pistorius R, Schäfer HJ: unpublished results
- 93. Eberson L, Ryde-Petterson G (1973) Acta Chem. Scand. 27: 1159
- 94. Eberson L, Nyberg K, Servin R (1976) Acta Chem. Scand. B30: 906
- 95. Hawkes GE, Utley JHP, Yates GB (1976) J. Chem. Soc., Perkin Trans. II: 1709
- 96. Utley JHP, Yates GB (1978) J. Chem. Soc., Perkin Trans. II, 395
- 97. Barry JE, Finkelstein M, Mayeda EA, Ross SD (1976) J. Am. Chem. Soc. 98: 8098
- 98. Ref. [10] p 629
- 99. Eberson L (1959) Acta Chem. Scand. 13: 40
- 100. Eberson L, Sandberg B (1966) Acta Chem. Scand. 20: 739
- 101. Eberson L (1960) Acta Chem. Scand. 14: 641
- 102. Eberson L, Nilsson S (1968) Acta Chem. Scand. 22: 2453
- 103. Eberson L (1963) Acta Chem. Scand. 17: 1196
- 104. a) Lelandais D, Chkir M (1974) Tetrahedron Lett. 36: 3113b) Chkir M, Lelandais D, Bacquet C (1981) Can. J. Chem. 59: 945
- 105. Motoki O (1955) J. Chem. Soc. Jap. 76: 930
- 106. Tsuji J, Kaito M, Yamada T, Mandai T (1978) Bull. Chem. Soc. Jap. 51: 1915
- 107. Woolford RG, Soong J, Lin WS (1967) Can. J. Chem. 45: 1837
- 108. Conway BE, Dzieciuch M (1963) Can. J. Chem. 41: 21
- 109. Waefler JP, Tissot P (1978) Electrochim. Acta 23: 899
- 110. Pattison FLM, Stothers JB, Woolford RG (1956) J. Am. Chem. Soc. 78: 2255
- 111. Fioshin MY, Tomilov AP, Avrutskaya IA, Kazakova LI, Eskin NT, Gromova GA (1963) Zh. Vses. Khim. 8: 600; (1964) CA 60: 3992h
- 112. Saotome K, Komoto H, Yamazaki T (1966) Bull. Chem. Soc. Jap. 39: 480
- Berenblit VV, Panitkova ES, Rondarev DS, Sass VP, Sokolov SV (1974) Zh. Prikl. Khim. 47: 2427; (1975) CA 82: 78455
- 114. Levin AI, Chechina ON, Sokolov SV (1965) Zh. Obshch. Khim. 35: 1778; (1966) CA 64: 1943a
- 115. Coe PL, Sellers SF, Tatlow JC, Fielding HC, Wittaker G (1983) J. Chem. Soc., Perkin Trans. I: 1957
- 116. Kobayashi Y, Chiba T, Yokota K, Takata Y (1979) Hokkaido Daigaku Kogakubu Kenkyu Hokoku 45; (1980) CA 92: 163 547
- 117. Mori K (1961) Nippon Kagaku Zasshi 82: 1375; (1962) CA 57: 14929e
- 118. Rand L, Mohar AF (1965) J. Org. Chem. 30: 3885

- 119. Bunyan PJ, Hey DM (1962) J. Chem. Soc. 1360
- 120. Stork G, Meisels A, Davies JE (1963) J. Am. Chem. Soc. 85: 3419
- 121. Corey EJ, Sauers RR (1959) J. Am. Chem. Soc. 81: 1739
- 122. Rabjohn N, Flash GW (1981) J. Org. Chem. 46: 4082
- 123. Kobayashi S, Jap. Patent 7686401; (1977) CA 86: 120766b
- 124. Zhang L, Pan X, Zhao M, Tang H, Xu B (1988) Huaxue Tongbao 41; (1988) CA 108: 212438x
- 125. Kimura K, Horie S, Minato I, Odaira Y (1973) Chem. Lett. 1209; see also: Binns TD, Brettle R, Cox GB (1968) J. Chem. Soc. [London] C 584
- 126. For a good summary see ref. [56] p 233
- 127. Kuei W, Yingyong (1986) Kexue Xuebao 4: 351; (1987) CA 106: 92522
- 128. Degner D (1988) Top. Curr. Chem. 148: 1
- Zaidenberg AZ, Skundin AM, Vasilev YB, Kalinin YK, Dyukkiev EF, Kazarinov VE, Grinberg VA, Pat. SU 1.091.504, AS USSR; (1985) CA 103: 123023n
- 130. Quast H, Christ J (1984) Liebigs Ann. Chem. 1180
- 131. Merserau JM, Pat. DE 2.022.341, Uniroyal; (1971) CA 74: 54404f; see also: Gozlan A, Zilkha A (1984) Eur. Polym. J. 20: 759, 1199; (1984) CA 101: 152443p; (1985) 102: 114066f. For oligomers see: Adamov AA, Kovsman EP, Freidlin GN, Tarkhanov GA (1975) Elektrokhimiya 11: 1773; (1976) CA 84: 58558
- 132. Toy SM (1967) J. Electrochem. Soc. 114: 1042
- 133. Cauquis G, Haemmerle B (1970) Bull. Soc. Chim. Fr. 183
- 134. Wohl A, Schweitzer H (1906) Chem. Ber. 39: 890
- 135. Chechina ON, Levin AI (1971) Zh. Prikl. Khim. 44: 359; (1971) CA 74: 111821r
- 136. Knolle J, Schäfer HJ (1978) Electrochim. Acta 23: 5
- 137. Yadav AK, Jain A, Misra RA (1982) Electrochim. Acta 27: 535
- 138. a) Garwood RF, Naser-ud-Din, Scott CJ, Weedon BCL (1973) J. Chem. Soc., Perkin Trans. I: 2714
 - b) Knolle J, Schäfer HJ: unpublished results
- 139. Baldwin JE (1976) J. Chem. Soc., Chem. Commun. 734
- 140. Huhtasaari M, Schäfer HJ, Luftmann H (1983) Acta Chem. Scand. B37: 537
- 141. Mandell L, Daley RF, Day Jr. RA (1976) J. Org. Chem. 41: 4087
- 142. Adams C, Jacobsen N, Utley JHP (1978) J. Chem. Soc., Perkin Trans. II: 1071
- 143. Bounds DG, Linstead RP, Weedon BCL (1953) J. Chem. Soc. 2393
- 144. Weiper A, Schäfer HJ: unpublished results
- 145. Matsuda Y, Kimura K, Iwakura C, Tamura H (1973) Bull. Chem. Soc. Jap. 46: 430
- 146. a) Greaves WS, Linstead RP, Shephard BR, Thomas SLS, Weedon BCL (1950) J. Chem. Soc. 3326
- 147. Petersen RC, Finkelstein M, Ross SD (1967) J. Org. Chem. 32: 564
- 148. E.g. perfluornonanoic acid and methyl azelate: Weiper A, Schäfer HJ: unpublished results
- 149. Renaud RN, Sullivan DE (1972) Can. J. Chem. 50: 3084
- 150. a) Feldhues M, Schäfer HJ (1985) Tetrahedron 41: 4195, 4213; (1986) ibid. 42: 1285
 b) Lomölder R, Schäfer HJ (1987) Angew. Chem. 99: 1282; (1987) Angew. Chem. Int. Ed. Engl. 26: 1253
- 151. Baker BW, Kierstead RW, Linstead RP, Weedon BCL (1954) J. Chem. Soc. 1804
- 152. Krasavtsev II (1980) Ukr. Khim. Zh. 46: 776; (1980) CA 93: 139974j
- 153. Naser-ud-Din (1976) Pak. J. Sci. Ind. Res. 19: 132; (1978) CA 88: 120537
- 154. Rawlings FF (1964) J. Electrochem. Techn. 2: 217; (1964) CA 61: 9172
- 155. Brettle R, Latham DW (1968) J. Chem. Soc. (C) 906
- 156. Motoki K, Odoka S (1956) J. Chem. Soc. Jap., Pure Chem. Sect. 77: 163
- 157. Fuchs W, Barnetzky E (1955) Fette u. Seifen 57: 675
- 158. Ställberg-Stenhagen S (1951) Ark. Kemi 2: 95
- 159. Mislow K, Steinberg IV (1955) J. Am. Chem. Soc. 77: 3807
- 160. Romanuk M, Streinz L, Sorm F (1972) Collect. Czech. Chem. Commun. 37: 1755
- 161. Odham G, Petterson B, Stenhagen E (1974) Acta Chem. Scand. (B) 28: 36
- 162. Linstead RP, Lunt JC, Weedon BCL (1951) J. Chem. Soc. 1130
- 163. a) Tember GA, Getmanskaya ZI, Nichikova PR (1974) Zh. Prikl. Khim. 47: 477; (1974) CA 80: 120168j

b) Taikov BF, Novakovskii EM, Zhelhovskaya VP, Shadrova VN, Shcherbik PK (1981) Khim. Tverd. Topl. 61; (1982) CA 96: 51767v

- c) Jap. Pat. (1985) CA 102: 228323t
- 164. Eberson L (1962) J. Org. Chem. 27: 3706
- 165. Okida Y, Jap. Pat., Okamura Oil Mill; (1987) CA 106: 127947
- 166. a) Takahashi M, Osawa K, Ueda J, Okada K (1976) Yakugaku Zasshi 96: 1000; (1976) CA 84: 135228k
 - b) Schäfer HJ, Jensen U: unpublished results
 - c) Naser-ud-Din (1976) Pak. J. Sci. Ind. Res. 19: 132; (1978) CA 88: 120571
- 167. Seidel W, Schäfer HJ (1980) Chem. Ber. 113: 3898
- 168. Ref. [9] Table 6.11
- 169. Berenblit VV, Zapevalov AY, Panitkova ES, Plashkin VS, Rondarev DS, Sass VP, Sokolov SV (1979) Zh. Org. Khim. 15: 1417; (1979) CA 91: 192779
- 170. Renaud RN, Champagne PJ (1975) Can. J. Chem. 53: 529
- 171. Suhura Y, Mijazaki S (1969) Bull. Chem. Soc. Jap. 42: 3022
- 172. Andreev VM, Polyakova SG, Khrustova ZS, Bazhulina V, Smirnova VV (1980) USSR Pat.; (1981) CA 95: 6513c
- 173. Schäfer HJ, Hermeling D: unpublished results
- 174. Jap. Pat. 57.200.576, Asahi Glass Co; (1983) CA 98: 206 529
- 175. Jap. Pat. 58.161.784 Asahi Chem. Industry Co; (1984) CA 100: 128859
- 176. Stoll M (1951) Helv. Chim. Acta 34: 1817
- 177. Motoki S, Yamada Y (1960) Nippon Kagaku Zasshi 81: 665; (1962) CA 56: 396i
- 178. Andreev VM, Polyakova SG, Bazhulina VI, Khrustova ZS, Smirnova VV, Gorbunkova VP, Shchedrina MM (1981) Zhur. Organ. Khim. 17: 86; (1981) CA 94: 208308c
- 179. Levy PF, Sanderson JE, Cheng LK (1984) J. Electrochem. Soc. 131: 773
- 180. Linstead RP, Shephard BR, Weedon BCL, Lunt LC (1953) J. Chem. Soc. 1538
- 181. a) Linstead RP, Weedon BCL, Wladislaw B (1955) J. Chem. Soc. 1097
 b) Bounds DG, Linstead RP, Weedon BCL (1954) J. Chem. Soc. 4219
- 182. Kihira K, Batta A, Mosbach EH, Salen G (1979) J. Lipid Res. 20: 421; (1979) CA 91: 175606
- 183. a) Baker BW, Linstead RP, Weedon BCL (1955) J. Chem. Soc. 2218
 b) Takahashi M Jap. Pat. 76.113.835, Sanei Chem. Ind.; (1977) CA 86: 155359
- 184. Linstead RP, Lunt JW, Weedon BCL, Shephard BR (1952) J. Chem. Soc. 3621
- 185. Takahashi M Jap. Pat. 76.113.836, Sanei Chem. Ind.; (1977) CA 86: 139611
- 186. Bounds DG, Linstead RP, Weedon BCL (1954) J. Chem. Soc. 448
- 187. Pattison FLM, Woolford RG (1957) J. Am. Chem. Soc. 79: 2306, 2308
- 188. Gribble GW, Sanstead JK, Sullivan JW (1973) J. Chem. Soc., Chem. Commun. 735
- 189. Seidel W, Schäfer HJ: unpublished results
- 190. Yadav AK, Tissot P (1984) Helv. Chim. Acta 67: 1698
- 191. Klünenberg H, Schäfer HJ (1978) Angew. Chem. 90: 48; (1978) Angew. Chem. Int. Ed. Engl. 17: 47
- 192. Jensen U, Schäfer HJ (1981) Chem. Ber. 114: 292
- 193. Bestmann HJ, Roth K, Michaelis K, Vostrowsky O, Schäfer HJ, Michaelis R (1987) Liebigs Ann. Chem. 417
- 194. Seidel W, Schäfer HJ (1980) Chem. Ber. 113: 451; see also: Jensen-Korte U, Schäfer HJ (1982) Liebigs Ann. Chem. 1532
- a) Linstead RP, Lunt JC, Weedon BCL (1950) J. Chem. Soc. 3331
 b) Linstead RP, Lunt JC, Weedon BCL (1951) J. Chem. Soc. 1130
- 196. Takahashi J, Mori K, Matsui M (1979) Agric. Biol. Chem. 43: 1605; (1979) CA 91: 174752
- 197. Seidel W, Knolle J, Schäfer HJ (1977) Chem. Ber. 110: 3544
- 198. Schäfer HJ, Knolle J: unpublished results
- 199. Schäfer HJ, Wittenbrink C: unpublished results
- 200. Knolle J, Schäfer HJ (1975) Angew. Chem. 87: 777; (1975) Angew. Chem. Int. Ed. Engl. 14: 758
- 201. a) Chechina ON, Bildinov KN, Levin AI, Sokolov SV, USSR Pat. 370.199; (1973) CA 79: 18135

b) Chechina ON, Levin AI (1974) Elektrokhimiya 10: 1170; (1974) CA 81: 113916

- 202. Nutt RF, Strachan RG, Veber DF, Holly FW (1980) J. Org. Chem. 45: 3078
- 203. Seebach D, Renaud P (1985) Helv. Chim. Acta 68: 2342
- 204. Ceder O, Nilsson HG (1977) Acta Chem. Scand. B31: 189
- 205. Smets G, van Borght X, van Haeren G (1964) J. Polym. Sci. Pt. A 2: 5187; (1965) CA 62: 12751a
- 206. Schäfer H, Pistorius R (1972) Angew. Chem. 84: 893; (1972) Angew. Chem. Int. Ed. Engl. 11: 841
- 207. Lindsey RV, Peterson ML (1959) J. Am. Chem. Soc. 81: 2073
- 208. Fioshin MY, Kamneva LA, Mirkind LA, Salmin LA, Kornienko AG (1962) Neftekhimiya 2: 557; (1963) CA 58: 11205b
- 209. Fioshin MY, Kamnewa AI, Mirkind LA, Kornienko AG, Salmin LA (1966) Khim. Prom. 42: 804; (1967) CA 66: 43109x
- 210. Fioshin MY, Mirkind LA, Salmin LA, Kornienko AG (1965) Zh. Chim. Obsch. 10: 238; (1965) CA 63: 15858c
- Nechiporenko VP, Bogoslovskii KG, Novikov NA, Guigina NI, Mirkind LA (1984) Zh. Org. Khim. 20: 1799; (1985) CA 102: 61763
- 212. Goldschmidt S, Stöckl E (1952) Chem. Ber. 85: 630
- Vassiliev YB, Bagotzky VS, Kovsman EP, Grinberg VA, Kanevsky LS, Polishchyuk VR (1982) Electrochim. Acta 27: 919
- 214. Vassiliev YB, Lotvin BM, Grinberg VA (1981) Elektrokhimiya 17: 1252; (1981) CA 95: 211885
- 215. Smith WB, Hyon Yuh Y (1968) Tetrahedron 24: 1163
- 216. Chkir M, Lelandais D (1971) J. Chem. Soc., Chem. Commun. 1369
- Karapetyan KG, Bezzubov AA, Kanevskii LS, Skundin AM, Vasilev YB (1976) Elektrokhimiya 12: 1623; (1977) CA 86: 62705t
- 218. Renaud RN, Champagne PJ (1979) Can. J. Chem. 57: 990
- Bogoslovskii KG, Mirkind LA, Kondrikov NB (1986) Zh. Vses. Khim. 31: 470; (1986) CA 105: 215678z
- 220. Champagne PJ, Renaud RN (1980) Can. J, Chem. 58: 1101
- 221. Uneyama K, Ueda K (1988) Chem. Lett. 853
- 222. Stork L, Schäfer HJ: unpublished results
- 223. Brookes CJ, Coe PL, Owen DM, Pedler AE, Tatlow JC (1974) J. Chem. Soc., Chem. Commun. 323; see also: Brookes CJ, Coe PL, Pedler AE, Tatlow JC (1978) J. Chem. Soc., Perkin Trans. I: 202
- 224. Muller N (1983) J. Org. Chem. 48: 1370
- 225. Renaud RN, Champagne PJ, Savard M (1979) Can. J. Chem. 57: 2617
- 226. Renaud RN, Stephens CJ, Bérubé D (1982) Can. J. Chem. 60: 1687
- 227. Bruno F, Dubois JE (1973) Bull. Soc. Chim. Fr. 2270
- 228. Smith WB, Gilde HG (1959) J. Am. Chem. Soc. 81: 5325; (1961) J. Am. Chem. Soc. 83: 1355
- 229. Vassiliev YB, Bagotsky VS, Kovsman EP, Grinberg VA, Kanevsky LS, Polishchyuk VR (1982) Elektrochim. Acta 27: 929
- 230. Buist PH, Kendall J, Barradas RG (1984) J. Electroanal. Chem. 161: 393
- 231. Smith WB, Gilde HG (1960) J. Am. Chem. Soc. 82: 659
- 232. Smith WB, Manning DT (1962) J. Polym. Sci. 59: 945; (1963) CA 55: 27003a
- 233. a) Ogumi Z, Tari I, Takehara Z, Yoshizawa S (1976) Bull. Chem. Soc. Jap. 49: 841, 2883
 b) Yoshizawa S, Takehara Z, Ogumi Z, Najai C (1972) Denki Kagaku 40: 724; (1973) CA 79: 19194u
- 234. Utley JHP, Holman RJ (1976) Electrochim. Acta 21: 987
- 235. Grinberg VA, Polishchuk VP, Kanevskii LS, German LS (1980) CA 93: 157798
- 236. Schäfer HJ, Huhtasaari M, Becking L (1984) Angew. Chem. 96: 995; (1984) Angew. Chem. Int. Ed. Engl. 23: 980
- 237. Becking L, Schäfer HJ (1988) Tetrahedron Lett. 29: 2797
- 238. Schäfer HJ, Dralle G: unpublished results
- 239. Becking L, Schäfer HJ (1988) Tetrahedron Lett. 29: 2801
- 240. Giese B (1986) Radicals in organic synthesis, Pergamon, Oxford
- For kinetic studies see: Tyurin YM, Afonshin GN (1969) Elektrokhimiya 5: 1198; (1970) CA 72: 27687; Vijh AK (1972) J. Elektrochem. Soc. 119: 679
- 242. a) Walling C (1957) Free radicals in solution, Wiley, New York, p 581
 b) Overberger CG, Kabasakalian P (1957) J. Am. Chem. Soc. 79: 3182

c) Corey EJ, Bauld NL, Lalonde RT, Casanova J, Kaiser ET (1960) J. Am. Chem. Soc. 82: 2645

- 243. Koehl Jr. WJ (1964) J. Am. Chem. Soc. 86: 4686
- 244. Sato N, Sekine T, Sugino K (1968) J. Electrochem. Soc. 115: 242
- 245. Kase K, Sato N, Sekine T (1983) Denki Kagaku 51: 749; (1984) CA 100: 120310f
- 246. a) Gassman PG, Zalar FV (1966) J. Am. Chem. Soc. 88: 2252
- b) Ross SD, Finkelstein M (1969) J. Org. Chem. 34: 2923 247. Traynham JG, Green EE, Frye RL (1970) J. Org. Chem. 35: 3611
- 248. Zorge JA van, Strating J, Wynberg H (1970) Recl. Trav. Chim. Pays-Bas 89: 781
- 249. a) Shono T, Nishiguchi I, Yamane S, Oda R (1969) Tetrahedron Lett. 1965
- b) Gassman PG, Zalar FV (1966) J. Am. Chem. Soc. 88: 2252
- 249. Arora PC, Woolford RG (1971) Can. J. Chem. 49: 2681
- 250. a) Skell PS, Starer I (1959) J. Am. Chem. Soc. 81: 4117; (1962) J. Am. Chem. Soc. 84: 3962
 b) Skell PS, Reichenbacher PH (1968) J. Am. Chem. Soc. 90: 2309
- 251. Skell PS, Starer I, from Deno NC (1964) Chem. Eng. News 42: 88
- 252. Keating JT, Skell PS (1969) J. Am. Chem. Soc. 91: 695
- 253. Skell PS, Reichenbacher PH (1968) J. Am. Chem. Soc. 90: 3436
- 254. Laurent E, Milhaud J, Marquet B, Thomalla M (1981) Nouv. J. Chim. 5: 575
- 255. a) Stepanov FN, Baklan VF, Guts SS (1965) Akad. Nauk SSR 97: (1966) CA 65: 627
 b) Stepanov FN, Yurchenko AG, Isaeva SS, Novikova I, Novosti Elektrokhim. Org. Soedin.; (1975) CA 82: 364950d
- 256. Bernlöhr W, Beckhaus HD, Lindner HJ, Rüchardt C (1984) Chem. Ber. 117: 3303
- 257. Banda FM, Brettle R (1977) J. Chem. Soc., Perkin Trans. I: 1773
- 258. Wladislaw B, Ayres AMJ (1962) J. Org. Chem. 27: 281
- 259. Wladislaw B, Giora A (1965) J. Chem. Soc., London 5745
- 260. Linstead RP, Shephard BR, Weedon BCL (1952) J. Chem. Soc. (London) 3624
- 261. Finkelstein M, Petersen RC (1960) J. Org. Chem. 25: 136
- 262. a) Rabjohn N, Cranor WL, Schofield CM (1984) J. Org. Chem. 49: 1732
- b) Wladislaw B, Zimmermann JP (1970) J. Chem. Soc. B: 290
- 263. Iwasaki T, Nishitani T, Horikawa H, Inoue I (1982) J. Org. Chem. 47: 3799
- 264. Tanaka H, Kobayashi Y, Torii S (1976) J. Org. Chem. 41: 3482
- 265. Wladislaw B (1962) Chem. Ind. 1868; see also Uneyama K, Torii S, Oae S (1971) Bull. Chem. Soc. Jap. 44: 815
- 266. Schäfer HJ, Michaelis R: unpublished results
- 267. Wuts PGM, Sutherland C (1982) Tetrahedron Lett. 23: 3987
- 268. Nokami J, Kawada M, Okawara R, Torii S, Tanaka H (1979) Tetrahedron Lett. 1045
- 269. a) Mitzlaff M, Schnabel H, Germ. Pat. 2.336.976 (Höchst); (1975) CA 83: 9239
 b) Linstead RP, Shephard BR, Weedon BCL (1951) J. Chem. Soc. 2854
 c) Thomas HG, Kessel S (1988) Chem. Ber. 121: 1575
 d) Finkelstein M, Ross SD (1972) Tetrahedron 28: 4497
- 270. a) Horikawa H, Iwasaki T, Matsumoto K, Miyoshi M (1976) Tetrahedron Lett. 191
 b) Iwasaki T, Horikawa H, Matsumoto K, Miyoshi M (1979) Bull. Chem. Soc. Jap. 52: 826
- 271. Horikawa H, Iwasaki T, Matsumoto K, Miyoshi M (1979) J. Org. Chem. 43: 335
- 272. Hess U, Gross T, Thiele R (1979) Z. Chem. 19: 195
- 273. a) Renaud P, Seebach D (1986) Angew. Chem. 98: 836; (1986) Angew. Chem. Int. Ed. Engl. 25: 843

b) Steckhan E, Herborn C, Papadopoulos A, Lewall B, Ginzel KD (1988) 14. Sandbjerg Meeting, Abstr. p 59

- 274. a) Renaud P, Seebach D (1986) Helv. Chim. Acta 69: 1704b) Renaud P, Seebach D (1986) Synthesis 424
- 275. Yoshikawa M, Kamigauchi T, Ikeda Y, Kitagawa I (1981) Chem. Pharm. Bull. 29: 2571, 2582; (1981) Heterocycles 15: 349
- 276. Torii S, Tanaka H, Ogo H, Yamasita S (1971) Bull. Chem. Soc. Jap. 44: 1079
- 277. Iwasaki T, Horikawa H, Matsumoto K, Miyoshi M (1977) J. Org. Chem. 42: 2419
- 278. Thomas HG, Katzer E (1974) Tetrahedron Lett. 887
- 279. Mandell L, Daley RF, Day RA, Jr. (1977) J. Org. Chem. 42: 1461

- 280. Filardo G, Di Quarto F, Gambino S, Silvestri G (1982) J. Appl. Electrochem. 12: 127; (1982) CA 96: 59806
- 281. Torii S, Okamoto T, Tanida G, Hino H, Kitsuya Y (1976) J. Org. Chem. 41: 166
- 282. Torii S, Inokuchi T, Mizoguchi K, Yamazaki M (1979) J. Org. Chem. 44: 2303
- 283. a) Lelandais D, Bacquet C, Einhorn J (1981) Tetrahedron 37: 3131
 b) Bacquet C, Einhorn J, Lelandais D (1980) J. Heterocycl. Chem. 17: 831
- 284. a) Nokami J, Matsuura M, Sueoka T, Kusumoto Y, Kawada M (1978) Chem. Lett. 1283
 b) Torii S, Tanaka H, Kobayasi Y, Nokami J, Kawata M (1979) Bull. Chem. Soc. Jap. 52: 1553
 c) Nokami J, Kawada M, Okawara R, Torii S, Tanaka H (1979) Tetrahedron Lett. 1045
 d) Nokami J, Yamamoto T, Kawada M, Izumi M, Ochi N, Okawara R (1979) Tetrahedron Lett. 1047
- 285. Renaud P, Hürzeler M, Seebach D (1987) Helv. Chim. Acta 70: 292
- 286. Renaud P, Seebach D (1986) Helv. Chim. Acta 69: 1704
- 287. Iwasaki T, Horikawa H, Matsumoto K, Miyoshi M (1979) J. Org. Chem. 44: 1552
- 288. Nishitani T, Iwasaki T, Mushika Y, Miyoshi M (1979) J. Org. Chem. 44: 2019
- Nishitani T, Horikawa H, Iwasaki T, Matsumoto K, Inoue I, Miyoshi M (1982) J. Org. Chem. 47: 1706
- 290. Mori M, Kagechika K, Tohjima K, Shibasaki M (1988) Tetrahedron Lett. 29: 1409
- 291. Thomas HG, Kessel S (1985) Chem. Ber. 118: 2777; (1986) Chem. Ber. 119: 2173
- 292. Thomas HG, Katzer K (1974) Tetrahedron Lett. 887
- 293. Ref. [25] p 60
- 294. a) Eberson L, Nyberg K (1964) Acta Chem. Scand. 18: 1567
 b) Eberson L, Olofsson B (1969) Acta Chem. Scand. 23: 2355
- 295. a) Kornprobst JM, Laurent A, Laurent-Dieuzeide E (1968) Bull. Soc. Chim. Fr. 3657
 b) Kornprobst JM, Laurent A, Laurent-Dieuzeide E (1970) Bull. Soc. Chim. Fr. 1490
- 296. a) Thomas HG (1971) Angew. Chem. 83: 579; (1971) Angew. Chem. Int. Ed. Engl. 10: 557
 b) Thomas HG (1975) Chem. Ber. 108: 967
- 297. Laurent E, Thomalla M (1977) Bull. Soc. Chim. Fr. 834
- 298. a) Laurent E, Thomalla M (1976) Tetrahedron Lett. 4727
 b) Laurent E, Thomalla M (1975) Tetrahedron Lett. 4411
 c) Laurent E, Thomalla M, Marquet B, Burger U (1980) J. Org. Chem. 45: 4193
- 299. Laurent E, Thomalla M (1977) Electrochim. Acta 22: 531
- 300. Inayama S, Kawamata T, Shimizu N (1980) Chem. Pharm. Bull. 28: 277, 282; (1980) CA 93: 25868, 168426n
- 301. Torii S, Okamoto T, Tanaka H (1974) J. Org. Chem. 39: 2486
- 302. Slobbe J (1977) Chem. Commun. 82
- 303. Lelandais D, Chkir M (1975) C.R. Acad. Sci. Paris, Ser. C, 281: 731
- 304. Diaz A (1977) J. Org. Chem. 42: 3949
- 305. Iwasaki T, Horikawa H, Matsumoto K, Miyoshi M (1978) Tetrahedron Lett. 4799
- 306. a) Bobbitt JM, Willis JP (1980) J. Org. Chem. 45: 1978
- b) Bobbitt JM, Cheng TY (1976) J. Org. Chem. 41: 443
- 307. Shono T, Ohmizu H, Kise N (1980) Chem. Lett. 1517
- 308. Hermeling D, Schäfer HJ (1988) Chem. Ber. 121: 1151
- 309. Westberg HH, Dauben HJ (1968) Tetrahedron Lett. 5123
- 310. a) Radlick P, Klem R, Spurlock S, Sims JJ, van Tamelen EE, Whitesides T (1968) Tetrahedron Lett. 5117
 - b) van Tamelen EE, Carty D (1967) J. Am. Chem. Soc. 89: 3922
- 311. Baker AJ, Chalmers AM, Flood WW, Mac Nicol DD, Penrose AB, Raphael RA (1970) J. Chem. Soc., Chem. Commun. 166
- 312. Warren CB, Bloomfield JJ (1973) J. Org. Chem. 38: 4011
- 313. Leftin JH, Redpath D, Pines A, Gil-Av E (1973) Isr. J. Chem. 11: 75
- 314. Stelzer F, Brunthaler JK, Leising G, Hummel K (1986) J. Mol. Cat. 36: 135 (1986) CA 105: 173079
- 315. Plieninger H, Lehnert W (1967) Chem. Ber. 100: 2427
- 316. Vellturo AF, Griffin GW (1965) J. Am. Chem. Soc. 87: 3021
- 317. Kelly RC, Schletter J (1973) J. Am. Chem. Soc. 95: 7156
- 318. Torii S, Okamoto T, Oida T (1978) J. Org. Chem. 43: 2294

- 319. a) Traynham JG, Dehn JS (1967) J. Am. Chem. Soc. 89: 2139
 - b) Traynham JG, Green EE, Frye RL (1970) J. Org. Chem. 35: 3611
- 320. a) Snow RA, Degenhardt CR, Paquette LA (1976) Tetrahedron Lett. 4447b) Schäfer HJ, Burgbacher G: unpublished results /
- 321. Corey EJ, Casanova J (1963) J. Am. Chem. Soc. 85: 165
- 322. Maier G, Bosslet F (1972) Tetrahedron Lett. 4483
- 323. Shono T, Hayashi T, Omoto H, Matsumura Y (1977) Tetrahedron Lett. 2667
- 324. Torii S, Tanaka H, Mandai T (1975) J. Org. Chem. 40: 2221
- 325. Gream GE, Pincombe CF (1974) Aust. J. Chem. 27: 589
- 326. Gassmann PG, Fox BL (1967) J. Org. Chem. 32: 480
- 327. Imagawa T, Akiyama T, Kawanisi M et al. (1978) Tetrahedron Lett. 2165; (1979) Tetrahedron Lett. 1691; (1980) J. Org. Chem. 45: 2005
- 328. Schäfer HJ, Müller U: unpublished results
- 329. Winstein S, Trifan D (1952) J. Am. Chem. Soc. 74: 1147, 1154
- 330. a) Takeda A, Wada S, Murakami Y (1971) Bull. Chem. Soc. Jap. 44: 2729
 b) Binns TB, Brettle R, Cox GB (1969) J. Chem. Soc. C 1227, 2499
- 331. Waters JA, Witkop B (1971) J. Org. Chem. 36: 3232
- 332. Takeda A, Moriwake T, Torii S, Takaki T (1972) Bull. Chem. Soc. Jap. 45: 3718
- 333. a) Lelandais D, Bacquet C, Einhorn J (1978) J. Chem. Soc., Chem. Commun. 194
 b) Lelandais D, Bacquet C, Einhorn J (1981) Tetrahedron 37: 3131
- 334. Bonner WA, Mango FD (1964) J. Org. Chem. 29: 430
- 335. Schäfer HJ, Bitenic M: unpublished results
- 336. Rand L, Rao CS (1968) J. Org. Chem. 33: 2704
- 337. Wharton PS, Hiegel GA, Coombs RV (1963) J. Org. Chem. 28: 3217
- Michaelis R, Müller U, Schäfer HJ (1987) Angew. Chem. 99: 1049; (1987) Angew. Chem. Int. Ed. Engl. 26: 1026
- 339. Corey EJ, Sauers RR (1959) J. Am. Chem. Soc. 81: 1739, 1743
- 340. Schäfer HJ, Schenk B: unpublished results
- 341. Thomas HG, Gabriel J, Fleischhauer J, Raabe G (1983) Chem. Ber. 116: 375
- 342. Coleman JP, Eberson L (1971) J. Chem. Soc., Chem. Commun. 1300
- 343. Kräutler B, Bard AJ (1978) J. Am. Chem. Soc. 100: 2239
- 344. Ibid. 5958
- 345. Kräutler B, Bard AJ (1979) Nouv. J. Chim. 3: 31
- 346. Yoneyama H, Takao Y, Tamura H, Bard AJ (1983) J. Phys. Chem. 87: 1417
- 347. Kräutler B, Jaeger CD, Bard AJ (1978) J. Am. Chem. Soc. 100: 4903
- 348. Fox MA, Chen CC, Park KH, Younathan IN (1985) Amer. Chem. Soc. Symp. Ser. 278: 69; From Fox MA (1987) Top. Curr. Chem. 142: 71
- 349. Izumi I, Fan FRF, Bard AJ (1981) J. Phys. Chem. 85: 218
- 350. Chum HL, Ratcliff M, Posey FL, Turner JA, Nozik AJ (1983) J. Phys. Chem. 87: 3089
- 351. a) Koehl WJ (1967) J. Org. Chem. 32: 614
- b) Thomas HG, Schwager HW (1984) Tetrahedron Lett. 25: 4471
- 352. Miller LL, Ramachandran V (1974) J. Org. Chem. 39: 369
- 353. Hembrock A, Schäfer HJ (1985) Angew. Chem. 97: 1048; (1985) Angew. Chem. Int. Ed. Engl. 24: 1055
- 354. Pletcher D, Smith CZ (1975) J. Chem. Soc., Perkin Trans. I: 948