Copyright © Taylor & Francis Group, LLC

ISSN: 0030-4948 print

DOI: 10.1080/00304940902956093



# Fries Rearrangement of Anilides in the Presence of Phosphorus Pentoxide in Methanesulfonic Acid

### Babak Kaboudin and Yaghoub Abedi

Department of Chemistry, Institute for Advanced Studies in Basic Sciences Gava Zang, Zanjan, Iran

Aminoaryl ketones are an important class of compounds that exhibit a variety of interesting and useful properties. <sup>1–3</sup> Some aminoaryl ketones are useful intermediates for the synthesis of benzodiazepines exhibiting activity as peptide antagonists, antivirals, antimalarials, and inhibitors of DNA interactions. <sup>4–7</sup> Moreover, *p*-aminoaryl ketones are useful intermediates in the synthesis of other compounds that are used as sunscreens, anti-inflammatory agents, dyes, and inhibitors of MAP kinases. <sup>8–11</sup> The Fries reaction of aryl esters is an important rearrangement in aromatic chemistry. <sup>12–14</sup> In contrast to the widely studied Fries rearrangement of phenolic esters, relatively few papers have been reported on the Fries rearrangement of anilides <sup>12</sup> to *o*- and *p*-aminoaryl ketones, by photolysis or thermolysis (above 200–350°C) with various Lewis acids such as ZnCl<sub>2</sub>, SnCl<sub>4</sub>, TiCl<sub>4</sub>, ThCl<sub>4</sub> and BiCl<sub>3</sub>. <sup>15–18</sup> The Fries rearrangement of acetanilide has been also reported over zeolite catalysts at 280°C with 50% conversion. <sup>19</sup> Recently a Fries-type rearrangement of anilides has been reported by using strong bases *via* an anionic rearrangement. <sup>20</sup>

Methanesulfonic acid is a Brönsted acid that is used as catalyst and solvent for condensation or rearrangement reactions.  $^{21-23}$  Its use as catalyst in the Fries rearrangement of phenolic esters is already known.  $^{24-26}$  Addition of  $P_2O_5$  increased the solubility of organic compounds in methanesulfonic acid that has been used extensively in organic synthesis.  $^{27}$  As a part of our effort to explore methodologies for organic transformations,  $^{28-45}$  we described a new method for the Fries rearrangement of phenolic esters for the synthesis of acylaryl methane sulfonates in the presence of  $POCl_3$  in methanesulfonic acid. Herein, we report the Fries rearrangement of anilides in the presence of a mixture of  $P_2O_5$  in methanesulfonic acid (1:7) as an efficient reagent for the selective synthesis of p-aminoaryl ketones.

The Fries rearrangement of benzanilide (1a), chosen as a model compound, was studied in the presence of  $P_2O_5$  in methanesulfonic acid, and the progress of the reaction monitored by TLC (*Scheme 1* and *Table 1*). Treatment of 1a with a mixture of  $P_2O_5$  in methanesulfonic

Dedicated to Professor Hashem Sharghi on the occasion of his 60th birthday. Received October 24, 2008; in final form March 27, 2009.

Address correspondence to Babak Kaboudin, Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan 45195-1159, Iran. E-mail: kaboudin@iasbs.ac.ir

Scheme 1

acid (1:12) gave 4-aminobenzophenone (**2a**) in 8% yield after 48 h at  $100^{\circ}$ C (*Table 1*, *Entry 2*). Surprisingly, we found that increasing the amount of  $P_2O_5$  led to acceleration of the reaction rate and an increase in the yield of **2a** (*Entries 3*–6). We obtained the best results with 1:7 ratio of  $P_2O_5$  in methanesulfonic acid (*Entry 6*). The yield of the reaction did not change with increasing amounts of  $P_2O_5$ . Increasing the reaction temperature to  $110^{\circ}$ C also let to an increase in yield (*Entry 9*). Decomposition occurred when the reaction temperature was raised to  $120^{\circ}$ C. <sup>1</sup>H NMR studies on the Fries rearrangement of **1a** at different temperatures showed that at the beginning of the reaction, *p*-benzoyl- benzanilide (**3a**) is the major product. Sulfonated products **5** and **8a** (*Table 2*) were detected in low yields (<10%) in the reaction mixture after 48 h. In a separate experiment, when compound

Table 1
Fries Rearrangement of 1a in the Presence of Phosphorus Pentoxide in Methanesulfonic
Acid

|       | P <sub>2</sub> O <sub>5</sub> :CH <sub>3</sub> SO <sub>3</sub> H |                                      | Temperature      | Yield <sup>a,b</sup> (%) |  |
|-------|------------------------------------------------------------------|--------------------------------------|------------------|--------------------------|--|
| Entry | (w:w)                                                            | Solvent                              | (° C)            | 2a                       |  |
| 1     | 0:1                                                              | _                                    | 100              | _                        |  |
| 2     | 1:12                                                             | _                                    | 100              | 8                        |  |
| 3     | 1:10                                                             | _                                    | 100              | 20                       |  |
| 4     | 1:9                                                              | _                                    | 100              | 28                       |  |
| 5     | 1:8                                                              | _                                    | 100              | 35                       |  |
| 6     | 1:7                                                              | _                                    | 100              | 43                       |  |
| 7     | 1:7                                                              | _                                    | 80               | 8                        |  |
| 8     | 1:7                                                              | _                                    | 90               | 15                       |  |
| 9     | 1:7                                                              | _                                    | 110 <sup>c</sup> | 46                       |  |
| 10    | 1:7                                                              | ClCH <sub>2</sub> CH <sub>2</sub> Cl | reflux           | _                        |  |
| 11    | 1:7                                                              | $C_6H_5NO_2$                         | 100              | _                        |  |
| 12    | 1:7                                                              | $C_6H_5Cl$                           | 100              | _                        |  |

- a) Isolated yields.
- b) Reactions carried out for 48 h.
- c) Reaction mixture decomposed at 120° C

Table 2
The Fries Rearrangement of Anilides in a Mixture of Methanesulfonic Acid/Phosphorus
Pentoxide (7:1) for 48 h

| Substrate  | R                 | Product | Temperature ( $^{\circ}$ C) | Yield (%) <sup>a</sup> | Ratiob                   |
|------------|-------------------|---------|-----------------------------|------------------------|--------------------------|
| 1a         | Н                 | 2a + 3a | 110                         | 51                     | 9:1 ( <b>2a:3a</b> )     |
| 1b         | m-Cl              | 2b + 3b | 110                         | 61                     | 3:1 ( <b>2b:3b</b> )     |
| 1c         | o-Cl              | 2c      | 100                         | 45                     | _                        |
| 1d         | $p$ -CH $_3$      | 2d + 3d | 100                         | 45                     | 3:2 ( <b>2d:3d</b> )     |
| 1e         | m-CH <sub>3</sub> | 2e + 3e | 100                         | 56                     | 3:1 ( <b>2e:3e</b> )     |
| <b>1f</b>  | p-NO <sub>2</sub> | 8f      | 110                         | 65                     | _                        |
| <b>4</b> a | $CH_3$            | _       | 110                         | _                      | _                        |
| <b>4</b> a | $CH_3$            | 5+6a+7a | 115                         | 50                     | 1:1:1 ( <b>5:6a:7a</b> ) |
| 9a         | Ph                | 10a     | 85                          | 32                     | _                        |

- a) Yield refers to isolated yield by column chromatography.
- b) Ratio of products was calculated after separation by column chromatography.

**3a** was added to a mixture of  $P_2O_5$ /methanesulfonic acid (1:7) and stirred for 48 h at  $100^{\circ}$ C, compound **2a** was formed in 90% yield.

These results may be explained by considering the initial formation of  $\bf 3a$  which undergoes decomposition to  $\bf 2a$ . The Fries rearrangement of benzanilide ( $\bf 1a$ ) failed with a mixture of  $P_2O_5$ /methanesulfonic acid (1:7) in 1,2-dichloroethane, nitrobenzene, and chlorobenzene respectively at  $100^{\circ}$ C for 48 h.

The process was successfully extended to other anilides as summarized in *Table 2*. The Fries rearrangement of benzanilides (**1b-e**) with  $P_2O_5$ /methanesulfonic acid (1:7) afforded the desired products in 45–61% yields (*Table 2*). The reaction of *p*-nitrobezoyl benzanilide (**1f**) in the presence of this reagent led only to sulfonated product (**8f**) as the major product. Treatment of acetanilide (**4a**) in the presence of  $P_2O_5$  in methanesulfonic acid failed for 48 h at 110°C failed. However at 115°C this reaction gave three products: **5**, **6a**, and **7a** in 1:1:1 ratio in 50% total yield. With this reagent, *N*-benzoyl-1-naphthylamine (**9a**) gave **10a** 

in 32% yield after 48 h at 85°C, decomposition occurred after 48 h at 110 °C. In the case of N-phenylcinnamamide (**4b**), the cyclization product **11** was obtained as major product in 68% yield (*Scheme 2*). A sulfonated product **12** was also detected as a side- product in the reaction mixture (20% yield).

In summary,  $P_2O_5$ /methanesulfonic acid (1:7) was shown as an efficient reagent in the Fries rearrangement of anilides to p-aminoaryl ketones. Studies on the reaction mixture showed that the reaction proceeded via the formation of p-acylated anilide (3). Some of the major advantages of this protocol are simple procedure, easy work-up, good yields, inexpensive and non-toxic catalyst, mild reaction conditions relative to other current methodologies, a lower reaction temperature than other methodologies and reactions with high selectivity for providing p-aminoaryl ketones. All reported methods to give a mixture of two products p- and o-aminoaryl ketones including other unknown mixture products. All NMR data could be assigned and are in good agreement with the product structures (Tables 3 and Tables 3).

#### **Experimental Section**

All chemicals were commercial products and distilled or recrystallized before use. All melting points were obtained on a Buchi 510 apparatus and are uncorrected. Infrared (IR) spectra were determined using a FT-IR Brucker-Vector 22. NMR spectra were obtained on a DMX-250 Bruker Avance spectrometer in CDCl<sub>3</sub>. Silica gel column chromatography was carried out on Silica gel 100 (Merck No. 10184). Merck Silica-gel 60 F254 plates were used for preparative TLC.

#### General Procedure for the Preparation of Anilides (1, 4, and 9)

Acid chloride or anhydride (10 mmol) was added to a stirred solution of anilide (10 mmol) in THF (50 mL). The mixture was stirred for 2 h at room temperature. A white solid precipitated which was filtered and washed with  $H_2O$  (5  $\times$  20 mL). Pure anilide was obtained after recrystallization from AcOEt.

 $\begin{tabular}{l} \textbf{Table 3} \\ ^1 \mbox{H NMR and } ^{13} \mbox{C NMR of } \textbf{2a-e, 3a-d, 5, 6a, 7a, 8f, and } \textbf{10a}^a \end{tabular}$ 

| Cmpd       | $^{1}$ H NMR ( $\delta$ )                                                                                                                                                                        | $^{13}$ C NMR ( $\delta$ )                                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2a         | 4.46 (s, 2H, NH <sub>2</sub> ), 6.67 (d, 2H, <i>J</i> = 8.5 Hz), 7.41–7.60 (m, 3H), 7.68–7.78 (m, 4H)                                                                                            | 113.6, 127.3, 128.1, 129.5, 131.4, 132.9, 138.9, 151.0, 195.4                                                                               |
| <b>2</b> b | 6.25 (s, 2H, NH <sub>2</sub> ), 6.58 (d, 2H, <i>J</i> = 8.5 Hz), 7.45–7.65 (m, 6H)                                                                                                               | 113.1, 123.5, 127.8, 128.6, 130.6, 131.2, 133.1, 133.5, 141.6, 154.6, 192.2                                                                 |
| 2c         | 4.37 (s, 2H, NH <sub>2</sub> ), 6.58 (d, 2H, <i>J</i> = 8.0 Hz), 7.25–7.65 (m, 4H), 7.71 (d, 2H, <i>J</i> = 8.0 Hz)                                                                              | 113.7, 126.4, 126.6, 128.7, 129.7, 130.5, 130.9, 139.4, 152.2, 193.5                                                                        |
| 2d         | 2.43 (s, 3H), 4.15 (s, 2H, NH <sub>2</sub> ), 6.67<br>(d, 2H, $J = 8.5$ Hz), 7.25 (d, 2H, $J = 8.0$ Hz), 7.65 (d, 2H, $J = 8.0$ Hz), 7.71 (d, 2H, $J = 8.5$ Hz)                                  | 21.6, 113.6, 127.7, 128.8, 129.8, 132.8, 135.9, 142.1, 150.7, 195.3                                                                         |
| 2e         | 2.37 (s, 3H), 4.35 (s, 2H, NH <sub>2</sub> ), 6.61 (d, 2H, $J = 8.5$ Hz), 7.25–7.55 (m, 4H), 7.67 (d, 2H, $J = 8.5$ Hz)                                                                          | 21.4, 113.6, 126.7, 127.5, 127.9, 130.0, 132.2, 132.9, 137.9, 139.2 150.9, 161.7                                                            |
| 3a         | 7.45–8.10 (m, 14H), 8.24 (s, 1H, NH)                                                                                                                                                             | 119.2, 127.2, 128.3, 128.9, 129.9, 131.7, 132.3, 133.2, 134.4, 137.7, 141.9, 166.0, 195.8                                                   |
| 3b         | 7.45–8.05 (m, 12H), 10.72 (s, 1H, NH)                                                                                                                                                            | 120.1, 127.1, 128.0, 128.5, 129.2, 131.0, 131.6, 131.8, 132.4, 133.8, 136.9, 140.0, 165.1, 193.7                                            |
| 3d         | 2.40 (s, 3H), 2.44 (s, 3H), 7.15–7.30 (m, 4H), 7.60–7.90 (m, 8H), 8.43 (s, 1H, NH)                                                                                                               | 21.6, 21.7, 119.2, 127.2, 129.0, 129.5, 130.2, 131.5, 133.2, 135.0, 142.0, 142.8, 143.1, 166.0, 195.7                                       |
| 3e         | 2.34 (s, 3H), 2.42 (s, 3H), 7.20–7.90 (m, 14H), 8.80 (s, 1H, NH)                                                                                                                                 | 21.3, 21.4, 119.4, 124.3, 127.2, 128.0, 128.1, 128.5, 130.3, 131.6, 132.8, 133.0, 133.1, 134.5, 137.8, 138.1, 138.6, 142.4, 166.6, 196.2    |
| 5          | 3.21 (s, 3H), 5.01 (s, 2H, NH <sub>2</sub> ), 6.75 (d, 1H, $J = 8.0 \text{ Hz}$ ), 6.83 (t, 1H, $J = 8.0 \text{ Hz}$ ), 7.39 (t, 1H, $J = 8.0 \text{ Hz}$ ), 7.24 (d, 1H, $J = 8.0 \text{ Hz}$ ) | 42.2, 117.6, 118.0, 129.4, 135.1, 146.2                                                                                                     |
| 6a         | 2.01 (s, 3H), 3.14 (s, 3H), 7.70–7.90 (m, 4H), 10.37 (s, 1H, NH)                                                                                                                                 | 24.6, 43.5, 119.1, 119.2, 128.6, 144.2, 169.6                                                                                               |
| 7a         | 2.20 (s, 3H), 2.60 (s, 3H), 7.40 (s, 1H, NH), 7.61 (d, 2H, $J = 8.5$ Hz), 7.94 (d, 2H, $J = 8.5$ Hz)                                                                                             | 24.6, 26.8, 118.6, 129.9, 131.9, 144.1, 169.4, 196.9                                                                                        |
| 8f         | 3.19 (s, 3H), 7.88 (d, 2H, <i>J</i> = 8.7 Hz),<br>8.03 (d, 2H,<br><i>J</i> = 8.7 Hz), 8.18 (d, 2H, <i>J</i> = 8.7 Hz),<br>8.38 (d, 2H, <i>J</i> = 8.7 Hz),<br>10.97 (s, 1H, NH)                  | 44.2, 120.6, 124.1, 128.6, 129.9, 136.0, 140.4, 143.7, 149.8, 165.0                                                                         |
| 10a        | 7.52–8.25 (m, 16H), 10.78 (s, 1H, NH)                                                                                                                                                            | 122.4, 124.5, 125.8, 126.9, 127.9, 128.3, 128.4, 128.9, 129.3, 129.4, 130.3, 131.6, 132.3, 133.9, 134.0, 134.8, 137.4, 138.3, 166.8, 197.3. |

a) All compounds showed IR absorption at 3150–3420 for N-H and 1620–1680  $\rm cm^{-1}$  for C=O

|      |         |                       | Elemental Analysis (Found) |             |             |
|------|---------|-----------------------|----------------------------|-------------|-------------|
| Cmpd | mp (°C) | lit. (°C)             | С                          | Н           | N           |
| 2a   | 124–125 | 124 <sup>13</sup>     |                            |             |             |
| 2b   | 152-153 | $154 - 155^{14}$      | _                          |             | _           |
| 2c   | 112-113 | $112^{19}$            | _                          |             | _           |
| 2d   | 190-191 | 189-191 <sup>15</sup> | _                          | _           | _           |
| 2e   | 117-119 | _                     | 79.58 (79.65)              | 6.21 (6.03) | 6.63 (6.46) |
| 3a   | 156-158 | $157 - 159^{16}$      | _                          | _           | _           |
| 3b   | 163-165 | _                     | 65.03 (64.95)              | 3.55 (3.45) | 3.79 (3.73) |
| 3d   | 176-178 | _                     | 80.21 (80.12)              | 5.92 (5.80) | 4.25 (4.15) |
| 3e   | 169-171 | _                     | 80.21 (80.02)              | 5.92 (5.70) | 4.25 (4.10) |
| 5    | 57-58   | 58-59 <sup>17</sup>   | _                          |             |             |
| 6a   | 181-183 | 183-184 <sup>18</sup> | _                          |             |             |
| 7a   | 166-168 | $166-167^{16}$        | _                          |             | _           |
| 8f   | 282-284 | _                     | 52.49 (52.55)              | 3.79 (3.70) | 8.75 (8.60) |
| 10a  | 167-169 | _                     | 82.02 (81.85)              | 4.89 (4.82) | 3.99 (4.05) |

Table 4
Mps and Combustion Data of 2a-e, 3a-d, 5, 6a, 7a, 8f, and 10a

## General Procedure for the Fries Rearrangement of Anilides in the Presence of $P_2O_5$ in Methanesulfonic Acid

In a 50 mL round bottom flask, a mixture of  $P_2O_5$  (1 g) in methanesulfonic acid (5 mL) was stirred for 10 min at 80°C. The anilide (3 mmol) was added to the mixture and the reaction mixture was heated at  $100-115^{\circ}$ C for 48 h (The reaction progress was followed by TLC). The reaction mixture was quenched by adding water, neutralized with NaOH solution (50 mL, 10%) and extracted with chloroform (2 × 50 mL). The *p*-aminoaryl ketone was easily removed from the reaction mixture by extraction with HCl (50 mL, 10%). The aqueous phase was neutralized with NaOH (50 mL, 10%) and the product extracted with diethyl ether (4 × 25 mL). The solvent was evaporated and the product recrystallized from acetone. After separation of the *p*-aminoaryl ketone from the reaction mixture, the mother liquor (chloroform) containing unreacted anilide and other rearrangement products that were separated by column chromatography with *n*-hexane/ethyl acetate as eluting solvents (the ratio of solvent depends on the amides).

**4-Phenyl-3,4-dihydroquinolin-2(1***H***)-one (11)** white crystals, mp. 187–189°C (*n*-hexane/EtOAc); <sup>1</sup>HNMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  2.95 (d, 2H, J = 7.0 Hz), 4.31 (t, 1H, J = 7.2 Hz), 6.90–7.05 (m, 3H), 7.15–7.48(m, 6H), 9.52 (s, 1H, NH); <sup>13</sup>C-NMR (62.9 MHz, CDCl<sub>3</sub>): 38.4, 41.9, 115.8, 123.4, 126.6, 127.2, 127.8, 128.0, 128.3, 128.9, 137.0, 141.5, 171.2.

*Anal.* Calcd for  $C_{15}H_{13}NO$ : C, 80.68; H, 5.87; N, 6.28. Found: C, 80.45; H, 5.80; N, 6.21.

**4-(4-(Methylsulfonyl)phenyl)-3,4-dihydroquinolin-2(1***H***)-one (12)** white crystals, mp. 233–235°C (*n*-hexane/EtOAc);  $^{1}$ H NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  2.73 (dd, 1H, J = 6.5 and 16.0 Hz), 2.88 (dd, 1H, J = 6.5 and 16.0 Hz), 3.18 (s, 3H), 4.47 (t, 1H, J = 6.5 Hz), 6.85–6.98 (m, 3H), 7.15–7.25(m, 1H), 7.43 (d, 2H, J = 8.2 Hz), 7.94 (d, 2H, J = 8.2 Hz),

10.31 (s, 1H, NH); <sup>13</sup>C-NMR (62.9 MHz, CDCl<sub>3</sub>): δ 37.9, 38.9, 43.9, 116.0, 122.9, 125.7, 127.9, 128.5, 128.6, 128.9, 138.5, 139.8, 149.0, 169.2.

Anal. Calcd for C<sub>16</sub>H<sub>15</sub>NO<sub>3</sub>S: C, 63.77; H, 5.02; N, 4.65. Found: C, 63.70; H, 4.89; N, 4.50

#### Acknowledgement

The Institute for Advanced Studies in Basic Sciences (IASBS) is thanked for supporting this work.

#### References

- 1. M. A. Zolfigol, P. Salehi, A. Ghaderi, M. Shiri and Z. Tanbakouchian, *J. Mol. Cat. A: Chem.*, **259**, 253 (2006).
- 2. S. Ferrini, F. Ponticelli and M. Taddei, J. Org. Chem., 71, 9217 (2006).
- 3. S. Ferrini, F. Ponticelli and M. Taddei, *Org. Lett.*, **9**, 69 (2007).
- 4. B. Evans, A. Pipe, L. Clark and M. Banks, Bioorg. Med. Chem. Lett., 11, 1297 (2001).
- 5. P. G. Wyatt, M. J. Allen, J. Chilcott, G. Hickin, N. D. Miller and P. M. Woollard, *Bioorg. Med. Chem. Lett.*, 11, 1301 (2001).
- S. Y. Stevens, B. A. Bunin, M. J. Plunkett, P. C. Swanson, J. A. Ellman and G. D. Glick, J. Am. Chem. Soc., 118, 10650 (1996).
- 7. B. L. De Corte, J. Med. Chem., 48, 1689 (2005).
- 8. G. Lamm, R. Helmut and O. Schaffer, US 5,510,468; Chem. Abstr., 118, 126484 (1993).
- C. W. Andrews, G. H. Chan, G. A. Freeman, K. R. Romines, J. H. Tidwell and P. M. C. Pianetti, US 7,273,863 B1; *Chem. Abstr.*, 134, 237301 (2001).
- 10. S. E. Havez, US 2003/73832 A1; Chem. Abstr., 137, 325234 (2002).
- 11. K. Berg-Schultz and U. Huber, US 2005/0255066 A1; Chem. Abstr., 139, 327930 (2003).
- 12. R. Martin, Org. Prep. Proced. Int., 24, 369 (1992).
- 13. K. Desai and C. M. Desai, J. Indian Chem. Soc., 48, 863 (1971).
- S. Ravi, N. Sarvanan, A. Shanthi, N. Dharmaraj and A. Lakshmnanan, *Indian J. Chem.*, 30B, 443 (1991).
- 15. A. Basha, S. S. Ahmad and T. A. Farooqui, Tetrahedron Lett., 3217 (1976).
- 16. B. I. Ardashev and V. I. Minkin, Zh. Obschei Khim., 27, 1261 (1957).
- 17. J. F. J. Dippy and J. H. Wood, *Nature*, **157**, 408 (1946).
- 18. M. Z. A. Badr, M. M. Aly and F. F. Abdel-Latif, J. Org. Chem., 44, 3244 (1979).
- 19. K. J. Balkus Jr., A. K. Khanmamedova and R. Woo, J. Mol. Cat. A: Chem., 134, 137 (1998).
- 20. S. L. MacNeil, B. J. Wilson and V. Snieckus, Org. Lett., 8, 1133 (2006).
- 21. A. A. Leon, G. Daub and I. R. Silverman, J. Org. Chem., 49, 4544 (1984).
- 22. S. C. Baker, Nature, 350, 627 (1991).

- O. Mounhtady, H. Gaspard-Iloughmane, N. Roques and C. L. Roux, *Tetrahedron Lett.*, 44, 6379 (2003).
- A. Commarieu, W. Hoelderich, J. A. Laffitte and M. P. Dupont, J. Mol. Cat. A:Chem., 182–183, 137 (2002).
- 25. B. Kaboudin, Phosphorus, Sulfur and Silicon, 178, 887 (2003).
- 26. H. Sharghi, and B. Kaboudin, J. Chem. Res. (S), 628 (1998).
- 27. P. E. Eaton, G. R. Carlson, and J. T. Lee, *J. Org. Chem.*, **38**, 4071 (1973).
- 28. B. Kaboudin, Chem. Lett., 880 (2001).
- 29. M. S. Balakrishna and B. Kaboudin, Tetrahedron Lett., 42, 1127 (2001).
- 30. B. Kaboudin and R. Nazari, Tetrahedron Lett., 42, 8211 (2001).
- 31. B. Kaboudin and R. Nazari, Synth. Commun., 31, 2245 (2001).
- 32. B. Kaboudin and M. S. Balakrishna, Synth. Commun., 31, 2773 (2001).
- 33. B. Kaboudin, Tetrahedron Lett., 43, 8713 (2002).
- 34. B. Kaboudin and A. Rahmani, Synthesis, 2705 (2003).
- 35. B. Kaboudin and F. Saadati, Synthesis, 1249 (2004).
- 36. B. Kaboudin and A. Rahmani, Org. Prep. Proced. Int., 36, 82 (2004).
- 37. B. Kaboudin and K. Moradi, Tetrahedron Lett., 46, 2989 (2005).
- 38. B. Kaboudin and H. Haghighat, Tetrahedron Lett., 46, 7955 (2005).
- 39. B. Kaboudin, H. Haghighat and T. Yokomatsu, J. Org. Chem., 71, 6604 (2006).
- 40. B. Kaboudin and M. Karimi, Bioorg. Med. Chem. Lett., 16, 5324 (2006).
- 41. B. Kaboudin and F. Farjadian, Beilstein J. Org. Chem., 2, 4 (2006).
- 42. B. Kaboudin and K. Moradi, Tetrahedron Lett., 46, 2989 (2005).
- 43. B. Kaboudin, Tetrahedron Lett., 44, 1051 (2003).
- 44. B. Kaboudin and K. Moradi, Synthesis, 2339 (2006).
- 45. B. Kaboudin and E. Jafari, Synthesis, 3063 (2006).
- 46. B. Kaboudin, Tetrahedron, 55, 12865 (1999).
- 47. L. H. Piette, J. H. Sharp, T. Kuwana and J. N. Pitts, J. Chem. Phys., 36, 3094 (1962).
- 48. B. Staskun, J. Org. Chem., 29, 2856 (1964).
- 49. D. A. Deuton and H. Suschitzky, J. Chem. Soc., 4741 (1963).
- 50. R. Nyquist, Spectrochim. Acta, 19, 1559 (1963).
- 51. A. Hambly and B. O'Grady, Australian J. Chem., 15, 626 (1963)
- 52. N. Shinriki and T. Nambara, Chem. Pharm. Bull., 11, 178 (1963).
- 53. *Dictionary of Organic Compounds*, ed. J. Buckingham and F. Macdonald, 6th edn, Chapman & Hall, London, 1996.