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ABSTRACT: Magnets of the Halbach layout are interesting for the use in mobile NMR/
MRI devices. Therefore, the ideal Halbach magnet was iterated using identical bar magnets,
which are positioned and oriented based on analytical equations. These configurations
were simulated with two-dimensional finite-element methods. Performance factors were
defined to relate field strength with homogeneity and mass. A geometry of 16 magnets
provided a good compromise between performance and special requirements for the
desired use to store hyperpolarized xenon. The construction of such a magnet required the
design of dedicated support frames and procedures to mount them. The field strength and
homogeneity in the finished magnet were measured by a Hall probe and agreed well with
the simulations. The calculation and construction are described in detail and together with
the tabled field values for n magnets with n ! 80 may prove helpful for building similar
devices, which were named NMR Mandhalas (Magnet Arrangements for Novel Discrete
Halbach Layout). © 2004 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson
Engineering) 23B: 16–25, 2004
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INTRODUCTION

In recent years, the field of mobile NMR/MRI devices
has received increasing interest (1, 2), and several
important applications have been suggested and real-
ized. The main problem in building portable NMR
equipment is not so much the production of high
magnetic fields, but rather high and homogeneous
fields in a large and accessible volume.

To this end, the Halbach magnet layout (3, 4 )
offers a unique and elegant solution to strong and

homogeneous magnets. Such magnet designs are also
known as “magic rings” or “magic spheres,” and their
field characteristics can vary from the homogeneous
case, of an “inner” dipole, to that with multipoles (see
Fig. 1 and theory section). The latter have applications
as brushless, linear, and even spherical AC motors as
well as magnetic bearings for various applications
(5 ).

For NMR/MRI in moderately homogeneous fields,
only the inner dipole [Fig. 1(b)] is of practical interest.
The field strength being given by B !Br ln router/
rinner (6, 7 ), where Br is the remanence of the used
magnetic material. Although in principle, arbitrarily
strong magnetic fields could be achieved this way, the
coercivity limits the possible strength to values
around 3–4 T (8 ). However, the slow increase in flux,
which varies with the logarithm of the ratio of the
outer and inner radius of the “magic ring” makes a
direct scaling impractical due to the large resulting
mass of such a magnet. Hence, various approaches to

Received 25 March 2004; revised 27 May 2004; ac-
cepted 1 June 2004
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increase the flux by use of additional rings (8 ) or iron
inserts (6 ) have been proposed.

This work is a continuation of earlier attempts to
split this principal design into many pieces in order to
lower the weight of the arrangement (7, 9). This will
of course lower the density, but not necessarily the
homogeneity, of the magnetic flux. Furthermore, the
arrangement should be assembled from bar magnets
of identical size to minimize production costs and
simplify construction. This is also of importance for
the improvement of the homogeneity, because the
individually polarized segments of an annular struc-
ture, as seen in Fig. 1, are difficult to produce and are
a major source of field variations.

Although we needed such a magnet for a differ-
ent application (storage of hyperpolarized xenon),
the main task was to produce magnets of a robust
design and to evaluate their properties. A simple

design scheme allowed for the simulation of Hal-
bach magnet arrays produced from n identical bar-
shaped magnets (square cross section). This type of
design was named “NMR Mandhala” (Magnet Ar-
rangements for Novel Discrete Halbach Layout
from Tibetan for a round symbol, “that which en-
circles a center,” and a Buddhist symbol for whole-
ness, unity, and harmony).

Specially for NMR/MRI applications, devices of
this layout have the following advantages:

● high homogeneity
● close to optimum use of mounted magnetization
● transverse field direction (allows the use of so-

lenoidal coils for NMR)
● very small stray field
● made from identical, simple magnets
● robust
● easy and cheap to produce

THEORY

A detailed theoretical description of permanent mag-
netic materials can be found elsewhere (10).

The flux on the surface of a circle, or cylinder
containing an homogeneous field, is given by the
polar coordinates

M :! !Mt

Mn
" " M0 !sin "

cos "" with " " 0 . . . 2#.

[1]

with Mt the tangential and Mn the normal component
[see Fig. 1(a)].

To mimic these field characteristics inside a hollow
cylinder made from discrete magnetic parts, the mag-
netization direction in the ith magnet has to be (see
Fig. 2) (5 )

$i :! %1 # k&'i

with k ! ! and i " 0, 1, . . . , n $ 1 [2]

where k is the number of pole-pairs or modes (i.e.,
k ! (1 for a dipolar, k ! ( 2 for a quadrupolar field).
The sign in the angular component, k, directs the flux
inside (“)”) or outside (“*”) the Halbach magnet
[see Fig. 1(b–e)].

NMR engineers are aware of this principle in the
context of homogeneous, transverse rf fields (B1

fields) as used in saddle coils and birdcages and their
modes (11). Hence, for the envisaged concept of
homogeneous flux inside the magnet ring, k ! )1 is

Figure 1 Explanation of the Halbach geometry according
to Eqs. [1] and [2]: (a) Magnetic flux inside and around a
homogeneously magnetized cylinder. The axes illustrate the
normal, Mn, and tangential, Mt, magnetization directions.
The graphs illustrate the field of a dipolar Halbach array
with flux inside (b) and outside (c) as well as a quadrupolar
Halbach array with flux inside (d) and outside (e). Arrows
indicate the magnetization direction.
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the value of choice [see Fig. 1(b)]. Such arrays are
also known as “magic rings” (6, 8, 12).

DESIGN

The construction principle is illustrated in Fig. 2. For
the calculation of the exact geometry of the magnet
arrangement, only two parameters are predetermined:
the radius of the ring, r, and the number of magnets,
n. Each magnet is positioned such, that its center
(vector cpi) has the same distance r from the origin.
The coordinates of each magnet center are then

cpi :! ! cyi
czi " ! r !sin 'i

cos 'i
"

with 'i :! i+ for i " 0, 1, . . . , n $ 1

and + :!
2#

n
[3]

where 'i is the angle between the ith magnet center
and the direction of the main field, B0 (by definition,
the z axis; see Fig. 2). The orientation of the ith

magnet relative to the z axis is then given by the angle
$i ! 2'i (see Eq. [2]). Once the n magnets are
spatially arranged (calculating n/8 magnets or one
octant is sufficient due to symmetry), their size, a, is
scaled such that the most dense arrangement results.

This gives the following coordinates of each corner of
the ith bar-magnet

1pi: " ! 1yi
1zi" " cpi #

a

#2
!cos ,i

sin ,i
"

2pi: " ! 2yi
2zi" " cpi #

a

#2
!*sin ,i

cos ,i
"

3pi: " ! 3yi
3zi" " cpi #

a

#2
!*cos ,i

*sin ,i
"

4pi: " ! 4yi
4zi" " cpi #

a

#2
! sin ,i

*cos ,i
"

with ,i :!
#

4
$ 2'i [4]

Here each corner is represented by a vector jpi, where
the index i identifies the magnet and j denotes the
corner, numbered in the sense of quadrants as shown
in Fig. 3. The length of a magnet’s side, a, is found by
solving 4pn

8
*1 ) -(1pn

8
*1*

4pn

8
*1) ! 3pn

8
,, which gives

Figure 3 Schematic representation of the magnet coordi-
nates. The positions of the first three magnets (i ! 0, 1, 2 for
n ! 16) are shown. The nomenclature of the corner indices
and radii is illustrated.

Figure 2 Schematic geometry of magnet coordinates and
illustration of the symbols used. The corner with index 1 is
marked by a full dot and the centers of each magnet by
crosshairs.
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a " 2r.%+&

with .%+& :!
cos + $ sin + $ #2 sin!#

4
$ 2+"

2 cos!#

4
$ 2+" # #2

[5]

Hence, the area, A, occupied by the n magnets is

A " na2 " 4nr2.%+&2 [6]

The inner radius (accessible for experiments) is then
given by

rinner " r %1 $ #2 .%+&& [7]

and the radius of the outer perimeter is

router " r %1 # #2 .%+&& [8]

SIMULATION

The finite element simulations of the different arrange-
ments were performed in the 2D-freeware package
FEMM 3.3 (David Meeker, Foster-Miller, Inc.,
Waltham, MA). The geometry input files of FEMM
were created by a MATLAB script (MathWorks, Inc.),
which computes Eqs. [3–8]. These are then meshed and
solved by FEMM with a numerical precision of 10*8.
The number of mesh-nodes turned out to be most critical
for the simulated homogeneity. Therefore, the most
complex design (n ! 80) was simulated with different
numbers of finite elements and the homogeneity ana-
lyzed. An asymptotic behaviour was observed, where an
accuracy of 95% of the asymptotic value was chosen as

Figure 4 Results of the finite element simulation for various n and identical rinner. Due to the
inherent symmetry, only the first quadrant of the Halbach rings is shown at the same spatial scale.
Nineteen field lines are used to illustrate the homogeneity and cancellation of the stray field. The
grey scale ranges from 97% to 103% of the flux in the center. (a) n ! 4, (b) n ! 8, (c) n ! 16, (d)
n ! 24, (e) n ! 32, (f) n ! 40, (g) n ! 48, (h) n ! 56, (i) n ! 64, (j) n ! 72, and (k) n ! 80.
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a sufficient compromise between runtime and precision.
This corresponds to a number of mesh-nodes around
106. The magnetic material was assumed to be
FeNdB-37 (permeability / ! 1.049, coercivity Hc !
911 kA/m, assuming a linear B vs. H dependence. The
magnetic properties of the material in the simulation was
fine-tuned in accordance with the obtained field mea-
surements for the n ! 16 array.) Halbach arrays made
from n ! 4, 8, 16, 24, . . . 80 magnets were simulated for
the same inner radius (rinner ! 50 mm). The results are
depicted in Fig. 4.

To analyze the data, the results were read into
MATLAB and interpolated onto a Cartesian grid.
Averages and standard deviations of the local mag-
netic flux were computed from such equally spaced
data. This was done for two areas, one with a radius
of r1: ! 0.5 rinner and another of r2: ! 0.1 rinner. Table
1 lists the results obtained from these procedures. The
results should be invariant to the spatial scaling of the
problem, and hence can be used to quickly estimate
the magnetic flux and mass of the desired geometry.

To quantify the performance of the simulated mag-
net arrays, a field-performance factor,

fB%r& "
B! z%r&

0Bz%r&
[9]

is defined by dividing the average field by the inho-
mogeneity, such that ƒB is high for strong fields and
high homogeneity. Figure 5(a) shows this perfor-
mance factor for the simulated arrays. A distinct max-
imum at n ! 4 is observed, but this array is definitely
too bulky for most applications [see Fig. 4(a) and
Table 1]. Therefore, a second performance factor, ƒA,

is defined which relates ƒB to the area of the magnets,
which is thus proportional to the mass of the structure.
Consequently, ƒA is increasing for high fields, high
homogeneity, and low weight.

fA%r& "
B! z%r&

0Bz%r& A
[10]

The dependence of ƒAon the number of magnets is
shown in Fig. 5(b). Now it becomes clear that perfor-
mance of the n ! 4 array is exceeded by n ! 24 or 48,
depending on the analysed volume. Figure 5(b) also
shows that there is an asymptotic value of the perfor-
mance for large n, and that the improvement is more
significant for larger volumes.

However, the property of interest in an NMR ex-
periment is the sensitivity, which scales with Larmor
frequency to the (7/4)th power (13). Hence, a third
performance factor is defined to take this into account.

f1%r& "
1

7
4

0Bz%r& A
"

%$B! z%r&&
7
4

0Bz%r& A
[11]

This performance factor is shown in Fig. 5(c). Here
the maximum stays at n ! 4 for small volumes in the
center, which could be of importance for spectro-
scopic setups using microcoils.

CONSTRUCTION

For the desired application, the magnet should have a
B0 of at least 0.2 T (at a reasonable homogeneity of

Table 1 Summary of the Geometrical Properties for Various Numbers of Magnets (n, at rinner " 50 mm)

n r
(mm)

router

(mm)
a

(mm)
A

(cm2)
B! z(r1, r2)

(T)
0Bz(r1)
(ppm)

0Bz(r2)
(ppm)

1
(MHz)

ma

(kg)

4 100 150 100 400 .723 105 .883 30.550 75.20
8 100 150 70.7107 400 .777 3395 20.9 32.813 75.20

16 64.4472 78.8943 20.4314 66.7906 .311 800 9.33 13.141 12.56
24 58.4220 66.8440 11.9105 34.0464 .193 235 5.22 8.149 6.40
32 55.9285 61.8570 8.3842 22.4941 .139 107 3.23 5.866 4.23
40 54.5685 59.1370 6.4608 16.6969 .108 63.9 2.22 4.579 3.14
48 53.7136 57.4272 5.2518 13.2391 .0890 44.6 1.64 3.742 2.49
56 53.1270 56.2541 4.4223 10.9517 .0750 33.9 1.28 3.166 2.06
64 52.6999 55.3998 3.8182 9.3303 .0648 27.46 1.05 2.729 1.75
72 52.3750 54.7501 3.3588 8.1228 .0570 22.58 .866 2.402 1.53
80 52.1198 54.2396 2.9978 7.1896 .0510 19.46 .756 2.149 1.35

[The results of the simulations are the average flux, B! z(r), and its homogeneity, 0Bz(r), for two different areas (r1 ! 25 mm and r2 !
5 mm), the NMR frequency, 1, for 1H, and the mass, m.]

a For h ! 250 mm without support materials and 2 ! 7.52 g/cm3.
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ca. 1% over a central volume of 1 cm3) to separate the
resonances of 129Xe and 131Xe sufficiently. Therefore,
a compromise between field strength and homogene-
ity had to be made, and it was decided to build an
array with 16 magnets. Additionally, the resulting ring
had to surround a Dewar flask with an outer diameter
of 70 mm. All this resulted in the following geometry,
calculated from Eqs. [4–8]: r ! 56.78 mm, a ! 18
mm, A ! 51.84 cm2, rinner ! 44.04 mm, and router !
69.51 mm.

According to these values permanent magnets,
made from sintered FeNdB Grade 45 (N-45) and
coated with nickel, were ordered from Ningbo Ning-
gang Permanent Magnet Element Factory (Yinxian

Ningbo, People’s Republic of China). These magnets
had dimensions of 18 3 18 3 27 mm3, with a me-
chanical tolerance of about (0.1 mm and a density of
2 ! 7.52 g/cm3. The magnets were chosen to be
relatively short in the third dimension, so that they can
still be manipulated without special tools and safety
precautions. The manufacturer specified the following
magnetic properties for these permanent magnets:
remanence Br ! 1.33–1.37 T, coercivity Hc ! 836–
876 kA/m, and a maximum energy product (BH )max

of 43–45 MGOe.
To mount the magnets in the correct position and

orientation, a supporting structure needed to be de-
signed that was robust enough to withstand the strong
mutual forces of the bar magnets. For this purpose,
6-mm aluminium disks were fabricated by a com-
puter-controlled milling cutter [see Fig. 6(a)]. The
mounting process of individual magnets is shown in

Figure 5 Semilogarithmic plot of the performance factors
of the simulated properties of the magnets versus n: (a) ƒB

according to Eq. [9], (b) ƒA according to Eq. [10], (c) ƒ1

according to Eq. [11]. Squares for r1 ! 25 mm and circles
for average over area with r2 ! 5 mm. Lines are guides for
the eye only.

Figure 6 (a) Support ring showing the 16 5.7-mm deep
sockets for the magnets. They were milled out from
6-mm sheet aluminium. The depths of the sockets were
5.7 mm. The “spiral” structure on the bottom of each
socket is merely the path of the milling tool. (b) Magnetic
“shorting” of a magnet by the use of a pair of ferromag-
netic pliers.
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Fig. 6(b) where a heavy pair of ferromagnetic pliers
was used to “short” the magnetic flux. This was useful
in the completion of the array, with the last magnets
being strongly repelled. Once brought in position, the
magnets were glued into their individual sockets. A
second support ring, or top piece, was used to hold the
magnets in the desired positions during the curing of
the glue.

The inner faces of the top and bottom support rings
are identical in terms of the sockets for the magnets;
however, they differ on the outer faces, with holes for
nuts and bolts. This complication became necessary
because each layer of magnets, sandwiched between
such a top and bottom support piece, needed to be
fixed by brass bolts [see Fig. 7(a)]. These “sand-
wiches” were then stacked on threaded brass rods and
forced together by nuts [Fig 7(b)].

While the flux at the center of one of these sand-
wiches is about 0.1 T, the process of forcing them into
a stack significantly increases the flux density, until a

maximum of 0.311 T was reached in the center of a
stack of eight subunits. Figure 8 shows a single bar
magnet, a finished “sandwich,” and the final Halbach
magnet used in our lab made from a stack of eight
sandwich subunits. This final magnet had a mass of
11.4 kg (8.4 kg magnet material and 3 kg aluminium
and brass).

FIELD MEASUREMENT

The magnetic field in the constructed magnet was
scanned using a home-built device, to move a Hall
sensor across the sample via an xy table. A computer
controls the positioning and records the values from a
Gaussmeter 420 (Lakeshore Cryotronics, Inc.). With
this setup, the z and y components of the magnetic
field were scanned across an area of 40 3 40 mm2 in
the central plane (x ! 0). Additionally the z compo-
nent was measured along the axis of the magnet (y !
z ! 0). The results are summarized in Fig. 9. Unfor-
tunately, the z component was in the order of 0.3 T
and directly at a switching value of the range of the
used Gaussmeter. Therefore, the achieved precision
was limited to 0.1 mT for the z component, which is
in the same range as the inhomogeneities. This can be
seen in the distinct levels in Fig. 9(f). Otherwise, the
agreement between simulation and measurement is
impressive, considering that only a two-dimensional
FEM simulation was carried out.

The standard deviation between measured and
simulated fields was determined similarly to that of
the simulations for an area with a radius of 20 mm
(slightly smaller than r1 in Table 1). The values
were 4y ! 5.4 " 10*3 T and 4z ! 7.8 " 10*4 T (2500
ppm) and thus about a factor of about 3 worse than
the predicted 800 ppm (see Table 1). With a max-
imum value of 3.5 mT, the y component is in a
comparable range. Of course the inhomogeneity of
Bz in the yz plane increases with x deviating from 0
[as shown in Fig. 9(a)]. However, for a sphere in
the center with a radius of 10 mm the field doesn’t
change within the sensitivity limits of the used
Gaussmeter.

Looking at a greater distance along x, of course,
worsens the homogeneity, reaching a gradient
strength of roughly 0.3 T/m over the scanned range
[see Fig. 9(b)]. However, the homogeneity in this
direction can easily be improved by adding more
“sandwiches” to the stack.

In summary, in a volume of 5 3 5 3 5 mm3, the
homogeneity is better than 0.1 mT, which is the
limiting sensitivity of the Hall probe used at a field
strength of 0.311 T. In a first NMR experiment at a 1H

Figure 7 Schematic rendering of the supporting structure.
(a) Exploded view of the magnets (dark in the center) being
mounted between a top and bottom support ring and fixed
by bolts. (b) Assembly of two “sandwich” subunits from (a)
to a stacked magnet using threaded rods resulting in a
separation of 0.6 mm between the magnets in adjacent
stacks.
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frequency of 12.8 MHz, a line width of 59 kHz (700
ppm) was observed for a 18 3 18 3 30 mm3 (x, y, z)
water sample, which is in good agreement with the
simulated 800 ppm for a slightly larger area in Table
1. However, the same measurement also revealed a
very broad peak (55000–7000 ppm) of lower inten-
sity, which is very likely to be caused by protons
further away from the center (S. Anferova, V. An-
ferov, private communication). Future MRI experi-
ments will give more precise values.

DISCUSSION

From the simulations it becomes clear that the
maximum field strength is achieved with a small
number of bulky magnets. However, it is question-
able that such geometries will be used in mobile
NMR because of the high mass in comparison to
relatively small accessible volumes. Therefore, per-
formance factors were defined in Eqs. [9 –11] where
the field strength was related to homogeneity, mass,
and NMR sensitivity. From Table 1 and Fig. 5 it
can be seen that it depends on the special needs of
an application to define an optimal number of mag-
nets. The asymptotic behavior observed in Fig. 5 is
somewhat unrealistic, because the inhomogeneities
will increase due to the higher tolerances in man-

ufacturing smaller magnets. However, it is difficult
to give a value for such a trade-off, because man-
ufacturing tolerances will depend on the size of the
object. A good overview about the achievable field
strengths and homogeneities is given in Table 1.
Because these parameters should be independent of
the scale of the design, the desired choice can be
directly picked from this table or tailored to the
needed field strength by using magnets with differ-
ent remanences.

The acquired spectra of bulk samples cannot
easily be used to determine the homogeneity, be-
cause they might overemphasize the signal from the
homogeneous center (a problem that could be
solved by future localized NMR measurements).
Therefore, field measurements performed by a Hall
probe are given preference, although the observed
inhomogeneities (see Fig. 9) differ by a factor of 3
from the prediction. Various problems could cause
such deviations. First, the accuracy in manufactur-
ing was relatively low (in the percent range). Al-
though the deviation in the magnetization direction
is greatly reduced by using bar magnets, there are
still large variations in the remanence ((0.2 T) and
size ((0.1 mm). Additionally, the sintered FeNdB
material by itself can be quite inhomogeneous on a
millimeter level. Mounting the magnets might also
locally reduce the magnetization due to unavoid-

Figure 8 Photograph of (a) a single bar-magnet, (b) a finished “sandwich” subunit, and (c) the final
magnet made from a stack of eight “sandwich” subunits. The right-handed axes are for illustration
of the nomenclature.
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Figure 9 Comparison of measured and simulated magnetic flux density: (a) measured Bz in the xz
plane (y ! 0). The dashed line connects the central points, which were measured separately using
smaller steps as shown in (b) Bz along the array axis, x. The dashed line is a fit of the data by a
quadratic polynomial. (c, d) By(y,z) in the center (x ! 0) of the array (c) simulation and (d)
measurement; (e, f) Bz(y,z) in the center (x ! 0) of the array (e) simulation and (f) measurement.
Note: the scale for (c) and (d) is in mT.
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able impacts. Finally, the temperature coefficient
for FeNdB is large (5 0.1% of the remanence per
Kelvin), so that keeping the whole assembly at
uniform temperatures might be more demanding
than the mechanical design.

Different ideas of shimming Halbach magnets, by
addition of a second magnetic ring (8, 12, 14), are
already discussed but would add tremendously to the
mass.

CONCLUSIONS

The design principle and simulation of Halbach mag-
nets formed by iteration with n bar magnets was
demonstrated. The optimization for mobile NMR/
MRI devices was achieved by introducing perfor-
mance factors, which combine field strength and ho-
mogeneity with the mass of the device or the NMR
signal strength. However, due to special needs, a
compromise of n ! 16 was built and tested. A good
agreement between simulated and measured field val-
ues was found, showing that the properties listed in
Table 1, for various designs, seem reliable and may be
useful as a reference.

The results are promising for NMR experiments in
moderately homogeneous fields (e.g., measurements
of relaxation times, diffusion coefficients, and poros-
ity), which might greatly benefit from a portable and
self-shielded magnet design. Future work will focus
on the development of resistive shim and gradient
coils for this special geometry.
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