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The current distribution on thin conductors and rf field homogeneity for rf coils is 
described theoretically. After a pedagogical introduction to the techniques and an exact 
solution for the current or an isolated strip conductor, this article describes current dis- 
tribution and field uniformity for a variety of conventional and quadrature rfcoil designs. 
0 1986 Academic Press, Inc. 

I. INTRODUCTION 

At first glance, the description of rf coils for NMR imaging applications appears 
trivial. Provided that the wavelength of the driving rf is large compared to the length 
scale of the coil, retardation effects are negligible. In that limit, the problem of com- 
puting the electromagnetic field becomes a quasi-static calculation: as is the case for 
short antennas in the near-field limit ( I ) ,  the current distribution is assumed and the 
magnetic field is calculated directly by the Biot-Savart law. In this approximation, 
many of the design parameters of dc coils can be applied directly to rf coils. 

This simple description encounters difficulties when faced with a realistic rf coil. 
Consider first the typical static magnetic field coil. A dc coil typically consists of many 
fine current paths in series. The current distribution can be assumed uniform across 
the wire’s diameter. Unless one is interested in details of the field very close to a wire 
(within a few diameters of a wire) the corrections to this approximation are insignificant. 

On the other hand, the typical rf coil is constructed quite differently. To reduce 
self-inductance, an rfcoil is usually made with many fewer current loops. And typically, 
the wires carrying the current are made with some finite extent. The source of the 
difficulty in calculating the field is that one does not know a priori how the current is 
distributed across the conductor. For conductors with a width on the order of the 
diameter of the coil, the effect of altering a presupposed current distribution can have 
a noticeable effect on the resultant field. 

This paper is a theoretical discussion of currents on thin foil conductors and of the 
resultant fields through a few specific examples. The main results are (1) the derivation 
of the distribution of current on a thin conductor, (2) the use of this distribution in 
calculating power loss in the coil, and (3) the calculation of field uniformity. In all 
situations, I shall assume that the conducting surfaces are infinitely thin and perfectly 
conducting. The approximation of perfect conductivity is not overly restrictive provided 
that the skin depth of the conductor is much smaller than its thickness. The assumption 
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of infinite thinness of the conductor should be valid provided the thickness is much 
smaller than the width. The extension of these results to conductors with arbitrary 
cross sections is a simple extension of this paper. 

For this discussion, I shall be interested exclusively in the generic “saddle” coil. By 
this I mean a coil whose primary current carrying components are parallel to the z 
axis. In real situations, such coils are constructed by attaching conductors to the surface 
of a cylinder and parallel to its axis. Such a geometry allows for convenient patient 
access in whole-body imaging situations. This restriction obviously excludes solenoidal 
rf coils and many surface coils, as well as the conductors at the ends of saddle coils, 
for which complications in the complete theoretical discussion of these geometries 
prevent an analysis in this manner. 

11. BASIC PROPERTIES OF THE CURRENT DISTRIBUTION 

The problem at hand is the solution of Maxwell’s equations subject to boundary 
conditions. Since the conductors are perfectly conducting, the tangential components 
of the electric field must vanish. Denote the normal to the conductors by 2. The 
boundary conditions are stated 

E X n ^ = O .  

Furthermore, since rf coils are open structures, we also have boundary conditions 
at infinity. We impose the conditions that the fields vanish at infinity. The vanishing 
of the tangential components of the electric field on the conductor implies the looser 
constraint 

B - 2  = 0. 

This condition is just a statement that a good conductor is opaque to rf. 
An illustrative example of the consequences of the boundary condition is the single, 

isolated, flat strip conductor. The cross-sectional geometry is shown in Fig. 1. A surface 
current flows on the top and bottom of the strip in the positive z direction. Transverse 
components of the surface current vanish as a result of translational invariance and 
current conservation. 

We can exclude forms of the current distribution if they result in violations of the 
boundary conditions. For example, assume that the current is uniformly distributed 
across the conductor. At the center of the conductor, the normal component of the 
magnetic field vanishes on the surface. However, as one moves away from center, the 
imbalance in the amount of current on either side results in a net normal component 

FIG. 1 .  Geometry of the single, flat strip conductor. 
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of B. Qualitatively, we need more current near the edges of the conductor. As one 
moves away from center, then the fact that there is more current on one side is balanced 
by being closer to a concentration of current on the other. On the other hand, the 
analogue of the “skin effect” is also not a solution. If we assume that all of the current 
is within one skin depth of either edge, then again we do not cancel the normal 
components of B off center. 

This discussion of the previous paragraph illustrates how we could approach the 
problem. The surface current density must produce no normal component to B. The 
field at x due to a current between x’ and dx’ is just 

j(x’)dx’$ if x’ < x 

j(x’)dx’$ if x‘ > x. 

PO 1 

dB(x) = 

2a Ix - X’I 

We can integrate over the conductor to the left of the point x. (Due to the singularity 
in the integrand, we must cut off the integration at a distance E from x.) This integral 
is from x’ = -b to x’ = x - c.  The integration to the right of the point x is from 
x’ = x + E to X ’  = b. We demand that the net normal component of B vanish: 

1 b 1 
j(x‘)dx‘- J ~ j(x’)dx‘ = 0. t 11 J- ~ 

x‘=-b IX - X’I x‘=x+e Ix - X’I 

We could verify explicitly that the different forms of the surface current density dis- 
cussed earlier are not solutions. 

Notice also that the integral equation is independent of frequency. The only as- 
sumptions made regarding the frequency were that the skin depth is much less than 
the thickness of the foil-thus setting a lower limit on the frequency-and that retar- 
dation effects are negligible-thus setting an upper limit. If these constraints are sat- 
isfied, then current distribution depends only on the geometry of the foil. 

Unfortunately, integral Eq. [ 11 is not readily solvable. The reader may also object 
to the paradoxical assumptions of having infinitely long conducting foils and neglecting 
retardation effects. To answer both concerns, the discussion must address the problem 
of solving Maxwell’s equations at a more basic level. 

111. SURFACE WAVES 

A reasonable starting point for the description of the solution to Maxwell’s equations 
is the assumption that only the local properties of the current distribution determine 
the fields at any one point near the conductor. In this approximation, the current 
distribution across a strip should be independent of the location of the ends of the 
strip provided they are sufficiently far away. We may approximate the physical coil 
with a set of infinitely long conductors. 

The assumed geometry is a series of infinitely long parallel conductors parallel to 
the z axis. We can generalize the situation and allow for arbitrary cross sections on 
the conductors. 

Without any loss of generality, we can exploit the translation invariance in z and t 
to do a Fourier decomposition of the components of E and B. 
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We may assume the fields are of the form 

E(x, t )  = E(x, y)d(KZ--Wt) 

B(x, t )  = B(x, y)e"""~"'~. 

The propagation constant, K ,  is not necessarily related to the wave vector k = w/c. 
We can express the transverse components of the field in terms of the longitudinal 

through Maxwell's equations: 

(K' - k2)Et = Zw[? X V,BJ - iKv,E, 

(K' - k2)Bt = -ick2[? X VtE,] -kVtBz 
Pal 

[2bI 
E, = Ex$ + Ey$, Bt = Bx$ + By$. 

All components of E and B satisfy a Helmholz equation: 

[v: + (k2  - K')]E = 0 

d2 a2 
ax2 ay2 

v:=-+-. 
In addition, E, satisfies the boundary conditions 

E,(co) = 0 
Edconductor) = 0. 

The only solution to the Helmholz equation with these boundary conditions is 
E, = 0. 

In addition, one component of the transverse components of E vanishes on the 
conductor. This condition is 

which implies from Eq. [2a] 

or 

n^XE,=O 

n̂  x (2 x V,&) = 0 

a n^-  VtB, -B, = 0. dn 

So we see B, satisfies a two-dimensional Helmholz equation and the normal derivatives 
vanish on the boundaries. Again, by uniqueness of solutions, B, = 0 is the only solution. 
Maxwell's equations for the transverse components reduce to 

V, X Et = 0 
Vt.Et = 0 

Vt  X Bt = CLOJ 
V,.B, = 0 

1 
K 2  = k2 B = - (  2 X Et). 

C 

The solution to these is 

where 4 is a solution of a two-dimensional Laplace equation. On the surface of the 
conductors, 4 is a constant. At this point, the treatment of a saddle coil becomes 

E, = -Vt$ 
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identical to the discussion of the propagation of transverse electric magnetic (TEM) 
modes on transmission lines (2). Notice that this is the complete solution to Maxwell's 
equations in this specialized geometry. We have had to make no assumptions of ne- 
glecting retardation effects whatsoever. Furthermore, these results hold for conductors 
with arbitrary cross-sectional shape. 

For finite conductivity, in general two modes may exist-both a transverse electric 
(TE) and a transverse magnetic (TM) mode. A discussion of the transition from finite 
to infinite conductivity for a single circular conductor is best presented by Jones (3). 
The conclusion is that for large conductivity the TE mode decays rapidly and only a 
single TM mode will propagate. The longitudinal component of E is proportional to 
the resistivity and is much smaller in magnitude than the transverse. 

The problem becomes a standard boundary value electrostatics problem. Near the 
surface of the conductors, E is perpendicular to the surface and proportional to the 
surface charge in the equivalent electrostatics problem. The line integral of B along a 
loop just outside of a conductor is 

f B - d l  = f (2 X E,)*dl 

2 X E, is parallel to dl near the surface. Using Ampere's law, we see that the charge 
on the conductor in the equivalent electrostatics problem is proportional to the current 
flowing down the conductor in the real problem. It should be emphasized that the 
surface charge is fictitious. The only source of the fields is the time-varying current 
density. Furthermore, the line integral of E around a closed loop need not vanish 
unless the loop lies in a constant z plane. 

Now we can derive the surface current for the previous example of the isolated flat 
strip conductor. The electrostatic problem of the infinite flap strip is solved by means 
of a conformal transformation (3). A point in the transverse plane in the original 
problem has coordinates w = x + iy. The function 

2bv 
1 + v 2  

w = -  

maps the w plane to the upper half v plane with the strip forming the real line. In the 
original problem, field lines extend from the strip to the point at infinity. Since the 
point at infinity maps to v = i, the problem after the mapping is a charged wire at 
v = i next to an infinite conducting sheet. This is easily solved by images resulting in 

9 = (const.)ln - (: T i) * 
The electric field of this potential, evaluated at the surface of the conductor, gives us 
the surface current. This is 

I 1  
j ( x )  = - - b < x < b  

2a v m  
where Z is the total current flowing down the strip. A graph of this distribution is 
shown in Fig. 2. The current distribution has a mild singularity at the edges. Formally, 
the singularity is not a problem because it is integrable. 
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An approximation often used in waveguide theory is to calculate the current density 
on the walls of the waveguide for the perfect conductors, then uss that current density 
for calculating the power losses in the walls due to finite conductivity. This approxi- 
mation may be justified on variational grounds as providing an upper bound on the 
actual power loss in the real waveguide (2). Notice that this approximation will not 
work directly in the strip conductor problem. While the singularity in the current 
density is integrable, the singularity in the square of the current density is not. We 
would expect, therefore, that the current density for a real conductor does not have 
the mathematical singularities at the edges. 

In realistic situations the strip conductors are placed on the surface of a cylinder 
and parallel to its axis. The equivalent electrostatics problem is again exactly solvable 
for a single isolated conductor. A conformal transformation maps this problem to the 
previous example. For a curved strip along a circle of radius r in the complex w plane 
from w = re-'* to w = re'", the mapping 

. r -  w 
v = 1 -  

r + w  
sends the arc to the real line from -tan(a/2) to +tan(a/2). The electrostatics problem 
is reduced to the previous example. The current density of the curved strip con- 
ductor is nearly identical to that of the flat strip for subtended angles of less than 
(roughly) 90". 

IV. SADDLE COILS 

The exact solutions of the previous section assume that the presence of the other 
conductors is not important. We know that in a realistic coil, the current returns on 
another conductor relatively close to the first. The fields produced by the return path 
will interact with the currents on the other conductors and alter the distribution. 

0 

-b 0 b 

nc. 2. Current density of flat strip conductor. 
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Unfortunately, this problem is not solvable exactly and we must resort to numerical 
methods. 

The electrostatic potential with Dirichlet boundary conditions were calculated with 
the relaxation algorithm (5). The results in the remainder of this paper were computed 
on a 256 X 256 lattice. Since the rf coil is an open structure, we must place the 
conductors of coil on a circle with a radius of (typically) 60 lattice spacings. The edge 
of the lattice is grounded. To ensure that the calculated results are not dependent on 
the presence of the grounded walls of the lattice, the calculations are performed with 
different placement of the conductors. 

An interesting case to consider is the four conductor arrangement of a saddle-coil 
pair. The geometry and parameters are shown in Fig. 3. The parameters describing 
the location of the strip are the angles from the symmetry plane to the inside of the 
strip, 0,, and to the outside of the strip, 0,. Also shown in Fig. 3 are the redundant 
parameters of the center angle, 0, = i(Oi + 0,) and the angle subtended by the width 
of the strip, 8, = (8 ,  - 0J. The results of the static field analysis of the thin wire coil 
show that field uniformity occurs when 0, = 30" (7). The typical rf coil has openings 
of this size. 

Figure 4 shows the numerical solution of the current density for 0, = 30" and 
0, = 35" and 75". The graphs show the typical behavior: as decreases, the peaks on 
the inner edges decrease and the current density is more uniform. At O1 = 0, we would 
expect to see no inner peak and a single conductor with twice the width. Conversely, 
as the antiparallel conductors approach one another, the outer peaks increase. 

The lattice calculation provides a natural smoothing of the singularities at the edges 
of the conductors. We can use this property to estimate the power losses of the con- 
ductor. I shall use the quantity: 

FIG. 3. Geometry of the four strip saddle coil. The conductors extend in z direction to plus and minus 
infinity. Current directions are denoted by arrows. 
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0 

FIG. 4. Numerical solutions for the current density for (a) Oo = 35" and (b) 0, = 75". 

where B(0) is the value of the magnetic field at the origin, and j is the computed 
surface current density. The lattice will introduce artifacts into the evaluation of the 
integral: since the integrand in the denominator diverges like l/s at the edges of the 
conductor, the integral diverges like log@). We are using the lattice spacing as a cutoff 
for the integral, so the results of this calculation should contain pieces that diverge 
(slowly) if the lattice spacing were allowed to decrease. The computed values of q are 
therefore lattice dependent. The resultant calculations should be taken as a comparative 
guide in the comparison of different coil geometries. 

The results of Fig. 4 suggest that the most uniform current occurs when the gap 
between the parallel conductors is closed. This is just a slotted cylinder (6).  Figure 5 
shows the results of the calculation of q for different geometries. The units of q are 
arbitrary; q is a measure of, but not equal to, Q for the ideal, infinitely long rf coil. In 
particular, Q includes the surface conductivity of the material and therefore is frequency 
dependent. q is independent of frequency. The results of Fig. 5 are not startling. As 
expected, power loss is decreased by making wider strips. 

The uniformity of the transverse magnetic field is also calculable. The quantity 
presented in this paper is the relative root mean square deviation in the magnitude 
in the field over some area: 

The area of integration is taken arbitrarily, but not unrealistically, to be a circle 
with radius of 70% of the radius of the coil. Figure 6 shows the calculations of 6B for 
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FIG. 5.  Calculated values of q for slotted cylinder (circle), saddle coil with 8, = 30" (cross), and saddle coil 
with 8, = 20" (dot). 

the slotted cylinder, and saddle-coil pairs with Os of 20 and 30". Notice that the location 
of the center of the strips, O,, is close to 30". As Os decreases, the optimum value of 0, 
approaches the dc result of 19, = 30" (7). For coils with finite extent, the center of the 
strips moves slightly from this value. More importantly, the uniformity of the field at 
the optimum foil placement increases by a factor of two as the conductors become 
wider. 

V. SADDLE COILS IN QUADRATURE 

An rf coil with two separate saddle coils oriented 90" with respect to one another 
offer two distinct advantages over the single saddle coil: (1) since circularly polarized 

1 .O 
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FIG. 6. Field uniformity for slotted tube resonator and two saddle-coil geometries. The symbols are the 
same as Fig. 5. 
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rf can be generated, the power necessary to produce a spin flip is reduced, and (2) the 
detection of a spin echo by a set of coils increases the single to noise ratio by 
\Jz (8). 

The presence of additional conductor alters the currents and fields from the previous 
arrangement. As before, we can analyze the problem by means of the equivalent 
electrostatics problem. With the previous arrangement, we knew that equal and opposite 
currents flowed on each conductor. Since current in the original problem is proportional 
to charge in the equivalent problem, the electrostatics problem had two conductors 
at a positive potential and the other two at an equal and opposite value. We may treat 
the problem by superposition: imagine that a time varying current flows on conductors 
(A), (B), (C), and (D) of Fig. 7 in the usual sense. Conductors (A’), (B’), (C), and (D’) 
are normally 90” out of phase with respect to the other four conductors, however, 
imagine that these are not being driven at all. By superposition we may calculate the 
fields with (A), (B), (C), and (D) driven with the primed conductors disconnected and 
superimpose these with the fields of (A’), (B’), (C), and (D’) driven out of phase and 
the unprimed conductors disconnected. 

The question is, in the equivalent electrostatics problem what is the potential on 
the undriven conductors? We can answer that question in this case by symmetry. 
Conductors (A) and (B) of Figure 7 are at potential 4; conductors (C) and (D) are at 
-4. By symmetry, the potential on (A’) is the same as (C) and (B’) the same as (D’). 
However, the current that flows on (A’) must return on (C). This implies that the 
charge on (A’) in the equivalent electrostatics problem must be opposite the charge 
on (C). Again, using symmetry arguments, this implies that the potential on (A’) is 
opposite the potential on (C). The same holds for (B’) and (D’). Therefore, the potential 
on the primed conductors vanishes. 

Now it is no longer apparent that the slotted cylinder is the ideal rfcoil. The presence 
of the undriven conductor pair is effectively an opaque wall to the rf B field. Conse- 
quently, the B field uniformity may be degraded for the quadrature coil. Figure 8 

FIG. 7.  Geometry of quadrature saddle coil. 
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FIG. 8. Uniformity of B field produced by one set of conductors for quadrature coil. 

shows the behavior of the field uniformity for this arrangement and confirms this 
expectation. For greater than 45 O the conductors are overlapping. Notice that field 
uniformity is largely insensitive to the geometry of the coil, but that uniformity is 
decreased by roughly a factor of 4 over the Fig. 6. In addition, the currents induced 
on the undriven pair contribute to the power loss in the system. (Even though there 
is no net current on the undriven pair, eddy currents induced on the conductors 
dissipate energy. This power loss must be supplied by the driving source.) The calculated 
q of Fig. 9 shows this effect. In addition, as do approaches 45", the primed and unprimed 
conductors approach one another and q drops sharply. 

The curves of Fig. 8 are the results of calculations when current only flows through 
half of the conductors. This is relevant when the quadrature coil is only driven on 

+ 
0 * +  

I + 
+ 

0 
10 20 30 40 

00  

FIG. 9. Calculated values of q for quadrature coil. 
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one side, which is the case when the QD coil is used as a conventional transmitter. If 
the coil is used as a quadrature transmitter, or we wish to know the uniformity of 
sensitivity of the coil, we must properly treat the superposition of the fields (10). 

By the principle of reciprocity, the induced response of the coil to a precessing spin 
at a point is proportional to the transverse magnetic field generated by the coil at that 
point (9). The net rotating field is 

Btotd(r, 8, t )  = B(r, I9)eP' + B'(r, 19)e-i(or+r/2) 

where B is the field generated by the conductors (A), (B), (C) ,  and (D) and B' is the 
field generated by the primed conductors. By symmetry, B' at a point (r,  0) equals in 
magnitude the field B at (r, I9 + 90") but the components of B' rotated by 90" relative 
to B. The net field in the rotating frame is 

B,,,(r, 19) = B(r, 0) + B(r, 0 + 90"). 

This quantity is the relevant field generated by a true quadrature transmitter. By 
reciprocity, it is also the quantity which measures the uniformity of response of the 
coil. Notice that there are two separate effects: 

(1) Since the total field is effectively the sum of fields at two locations, the uniformity 
should increase. 

(2) The quantity of interest is a vector sum. If the fields at (r,  0) and (r,  I9 + 90") 
were equal, the total is just twice the individual fields. The coil is therefore twice as 
sensitive. If the fields are equal but rotated, the sensitivity of the coil due to spins at 
that point will not quite double. Therefore the increase in SIN in even the ideal case 
may not quite be \Jz. 

Figure 10 shows the uniformity of the magnetic field for a coil operated in quadrature. 
As expected the uniformity has improved over all previous designs. However, the 
shape of the curves is quite different from the previous example. The overall field 

0 1  
10 20 30 LO 

FIG. 10. Uniformity of B field for quadrature coil. 
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uniformity is greatest in a geometry which had relatively poor uniformity as a con- 
ventional rf coil. 

The calculation of the mean B field inside the rf coil shows that the average B field 
in the rotating frame does very nearly double. 

VI. CONCLUSIONS 

This paper has attempted to demonstrate three main results concerning the current 

(1)  The current distribution across a flat strip conductor at high frequency is sur- 

(2) Field uniformity for a conventional rf coil is maximized using the wide current 

(3) The best quadrature rf coil is not simply two conventional rf coils placed on 
top of one another. It is advantageous to use the properties of the rotating frame 
magnetic field to design the best quadrature coil. The results of these calculations 
show that the best geometry is the slotted cylinder with Oo N 25”. The q for this 
geometry is roughly half the q for a conventional receiver coil. If the thermal noise in 
the rf coil were the dominant source of noise in an NMR experiment, then the deg- 
radation in q would result in an increase in noise. In such a situation SIN would not 
increase by the ideal amount. 

distribution and field uniformity of saddle coils: 

prisingly uniform. It is therefore advantageous to make wide current paths. 

strips. 
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