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NUTRITIONAL REQUIREMENTS FOR GROWTH OF A 
FUNGUS ENDOPHYTE OF TALL FESCUE GRASS 

RAJIV K. KULKARNI AND BARBARA D. NIELSEN 

Microbiology Division, NPI, University of Utah Research Park, 
Salt Lake City, Utah 84108 

ABSTRACT 

The nutritional requirements of Acremonium coenophialum, a fungus endophyte of tall fescue, were 
examined in a semi-defined liquid medium. The fungus utilized several carbon sources including 
fructose, glucose, mannose, sucrose, trehalose, raffinose, sorbitol and mannitol. Trehalose and mannitol 
were excellent carbon sources. Nitrogen sources utilized by the endophyte included ammonium, ar- 
ginine, asparagine, cysteine, glutamine, proline and serine. Undefined complex nitrogen sources such 
as yeast extract, soytone and tryptone supported excellent growth. In a defined medium the fungus 
exhibited a requirement for thiamine. 
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Fungus endophytes have been reported to oc- 
cur in several species of ryegrass (Lolium sp.) 
and fescue grass (Festuca sp.) (Neill, 1940, 1941; 
Latch et al., 1984; White and Cole, 1985a). The 
tall fescue endophyte was previously referred to 
as Epichloe typhina (Fr.) Tulasne, but has re- 
cently been renamed Acremonium coenophialum 
Morgan-Jones and Gams (Morgan-Jones and 
Gams, 1982). The endophyte-infected forage 
grasses cause fescue toxicosis (Hoveland et al., 
1980) or ryegrass staggers (Fletcher and Harvey, 
1981) in grazing animals. Tall fescue (Festuca 
arundinacea Schreb.) is commonly used as both 
forage and turf grass. In the United States tall 
fescue is grown on 12 to 14 million hectares (Sie- 
gel et al., 1984). Hence losses in animal produc- 
tivity due to fescue toxicosis have been estimated 
as between $50-200 million annually. 

Acremonium coenophialum is a true endo- 
phyte in that it completes its entire life cycle 
within the host plant. Spores of this fungus have 
not been reported to occur on or in plants (Siegel 
et al., 1985), but conidia are produced on several 
complex media (Latch et al., 1984; Morgan-Jones 
and Gams, 1982). Using autoclaved tall fescue 
seedlings, White and Cole (1985b) obtained syn- 
nematous sporulation in vitro. In nature the fun- 
gus is transmitted in seed. Fungus dissemination 
does not occur by pollen, wind, rain or artificial 
infection (Siegel et al., 1984). 

The endophyte-colonized tall fescue plants or 
perennial ryegrass plants show no external dis- 
ease symptoms, hence the presence of the fungus 
endophyte is revealed either by microscopic ob- 
servations of plant tissue stained with aniline 

blue in lactic acid (Bacon et al., 1977; Clark et 
al., 1983) or by an enzyme-linked immunosor- 
bent assay (ELISA) developed by Johnson et al. 
(1982). 

Funk et al. (1983, 1985) have recently dem- 
onstrated a positive correlation between the pres- 
ence of an Acremonium sp. endophyte in peren- 
nial ryegrass (Lolium perenne L.) and enhanced 
resistance to the predatory larval stage of the sod 
webworm (Crambus sp.) and the bluegrass bill- 
bug (Sphenophorus parvulus Gyllenhall). In ad- 
dition, Johnson et al. (1985) observed that the 
presence of A. coenophialum in tall fescue inhib- 
ited feeding by aphids (Rhopalosiphum padi L. 
and Schizaphis graminum Rondani). Hence the 
endophyte appears to confer insect resistance 
upon the colonized host. This desirable charac- 
teristic may be appropriately utilized in inte- 
grated pest management practices for turfgrasses. 

Although some of the effects of the endophyte- 
host association are well documented, e.g. fescue 
toxicosis and insect resistance, very little is known 
about the physiology of the fungus itself. In order 
to study the physiology and biochemistry of the 
fungus it is important to establish the nutritional 
requirements for in vitro growth of the endo- 
phyte. We examined, therefore, the carbon source, 
nitrogen source and vitamin requirements for 
growth of A. coenophialum. The results of this 
study are reported here. 

MATERIALS AND METHODS 

Acremonium coenophialum was kindly sup- 
plied by Dr. E. M. Clark, Department of Botany, 
Plant Pathology and Microbiology, Auburn Uni- 
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versity, Auburn, Alabama. Cultures were main- 
tained on GY agar, a modified medium of Clark 
et al. (1983), which consisted of (per liter of 
deionized water) glucose, 5 g; yeast extract, 2 g; 
KH2PO4, 3 g; K2HPO4- 3H20, 2 g; MgSO4- 7H20, 
0.5 g; agar, 20 g; pH 6.4. To obtain inoculum, 
agar plugs containing a portion of the colony 
were transferred to 250 ml Erlenmeyer flasks 
containing 50 ml sterile GY medium and incu- 
bated on a New Brunswick G10 shaker at 23 C 
and shaken at 100 rpm for 2-4 weeks. 

The basal medium used in carbon and nitrogen 
utilization studies consisted of(per liter) KH2PO4, 
3 g; K2HPO4-3H2O, 2 g; MgSO4 7H20, 0.5 g; 
yeast extract 0.05 g; trace elements, 1 ml; pH 6.4. 
The trace elements were added at a final con- 
centration per liter of boric acid, 220 Aug; cupric 
sulfate, 150 ,ug; potassium iodide, 120 ,ug; ferric/ 
sodium EDTA, 300 jug; manganese sulfate, 130 
Lg; sodium molybdate, 110 jug; zinc sulfate, 110 
M,g. In carbon utilization studies the basal me- 
dium was supplemented with 25 mM carbon 
source (TABLE I) and ammonium sulfate (2 g/l). 
In nitrogen utilization experiments the basal me- 
dium was supplemented with 20 mM nitrogen 
source (TABLE II) and glucose (5 g/l). To deter- 
mine the vitamin requirements of A. coenophia- 
lum, yeast extract in the basal salts medium was 
replaced either by an individual vitamin or a 
combination of vitamins and the medium sup- 
plemented with glucose (5 g/l) and ammonium 
sulfate (2 g/l). Growth of the endophyte in a de- 
fined medium was also examined. The defined 
medium consisted of basal salts medium (with- 
out yeast extract) supplemented by glucose, 5 g; 
ammonium sulfate, 2 g; biotin, 20 Mug; pyridoxine 
hydrochloride, 200 ug; and thiamine, 200 ug per 
liter. In each case the medium was filter-steril- 
ized using Nalgene filtration units (pore size 0.2 
,m) and dispensed in 20 ml aliquots in sterile 
50 ml Erlenmeyer flasks stoppered with cotton 
plugs. 

For inoculum production, the mycelium was 
grown in liquid GY medium, harvested by cen- 
trifugation, homogenized in a sterile Dounce ho- 
mogenizer with a loose fitting teflon plunger and 
washed twice with 50 mM potassium phosphate 
buffer (pH 6.4). The homogenized hyphal frag- 
ments were resuspended in phosphate buffer and 
used as inoculum. All flasks in each experiment 
received the same quantity of inoculum, but be- 
tween experiments the inoculum size varied from 
3 to 9 mg dry weight per 20 ml medium. 

Cultures were incubated at 23 C for 2 weeks 
on a New Brunswick G10 shaker at 100 rpm. A 
2 week incubation period was selected as growing 
cultures were in the middle of a rapid-growth 
phase. At the end of the incubation period the 
contents of each 50 ml Erlenmeyer flask were 
separately filtered through a preweighed What- 
man #50 filter paper, washed with deionized water 
and dried at 65 C to a constant dry weight. Each 
nutrient variable was run in triplicate and all 
experiments were repeated three times. Dry 
weights are expressed as means + standard de- 
viations of three separate determinations. 

RESULTS AND DISCUSSION 

Carbon source utilization. - Thirty-one different 
carbon sources were screened (TABLE I). Yeast 
extract by itself, at a concentration of 0.05 g/l, 
supported minimal growth of the fungus (3 + 1 
mg/20 ml) and hence served as a source of vi- 
tamins and growth factors in carbon and nitrogen 
utilization studies. 

Four pentoses, arabinose, lyxose, ribose or xy- 
lose were not utilized by the endophyte. These 
four carbon sources have been previously re- 
ported to serve as sole carbon sources in other 
fungi (Perlman, 1965). Of the six hexoses 
screened, D-glucose, D-fructose and D-mannose 
were utilized by the endophyte for growth, 
whereas no growth occurred on galactose, sor- 
bose or rhamnose (TABLE I). In fungi, D-glucose 
and D-fructose are readily catabolized by the cell's 
glycolytic pathways (Cochrane, 1976). Mannose 
may be catabolized by the Embden-Meyerhoff 
pathway, and in addition is a component of the 
fungal cell wall (Bartnicki-Garcia, 1968). Inter- 
estingly, D-galactose, a commonly utilizable car- 
bon source in many fungi (Perlman, 1965), does 
not support growth of A. coenophialum. 

Out of the four disaccharides screened, only 
sucrose and trehalose supported significant 
growth of the endophyte. Trehalose is generally 
found as a storage carbohydrate in many fungi 
(Thevelein, 1984). An uptake system for treha- 
lose has been reported in Saccharomyces cere- 
visiae (Kotyk and Michaljanicova, 1979). Gen- 
erally, trehalose accumulates in the cell during 
the sporulation stage and is mobilized during 
spore germination (Thevelein, 1984). It is inter- 
esting, therefore, that the endophyte can utilize 
extracellular trehalose. Good growth was ob- 
served on raffinose (61 ? 10 mg/20 ml), whereas, 
little growth occurred on soluble starch (14 ? 1 
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mg/20 ml). No growth occurred on pectin, cel- 
lulose, galacturonic acid or polygalacturonic acid, 
indicating the inability of the endophyte to uti- 
lize plant cell wall components, perhaps due to 
the lack of cellulases and pectinase. This result 
is in agreement with the electron microscopic 
observations of Bacon (1983), where the endo- 
phyte strictly grew in the intercellular spaces of 
the plant leaf and did not invade the host cells. 
Acremonium coenophialum did not grow on ace- 
tate-, citrate-, propionate- or succinate-contain- 
ing media. 

Initial experiments revealed that A. coeno- 
phialum grew very well when mannitol was used 
as a carbon source, hence we examined the ability 
of the endophyte to grow on a variety of polyols 
(sugar alcohols). Compared to pentoses the pen- 
titols appeared to support a modest amount of 
growth, especially D-arabitol (20 ? 3 mg/20 ml) 
and D-ribitol (15 + 2 mg/20 ml), but no growth 
occurred on L-arabitol and xylitol. The sugar 
alcohols of glucose and mannose, sorbitol and 
mannitol, respectively, were good carbon sources. 
Interestingly, galactitol supported a limited 
amount of growth (21 + 8 mg/20 ml) whereas 
galactose was not utilized. It seems, therefore, 
that some sugar alcohols were better carbon 
sources than their respective sugars. Polyols have 
been reported in a large variety of fungi (Lewis 
and Smith, 1967). They may serve several func- 
tions in fungi-as carbohydrate reserves, as 
translocatory compounds, as agents in osmoreg- 
ulation, coenzyme regulation and storage of re- 
ducing power (Jennings, 1984). The functions of 
polyols in A. coenophialum remain to be deter- 
mined, but results from this study indicate that 
mannitol and sorbitol are good carbon and en- 
ergy sources. 

Nitrogen source utilization. -The fungus was able 
to utilize ammonium but not nitrate as a nitrogen 
source. The apparent inability to grow on nitrate 
could be due to lack of an enzyme in the nitrate 
reduction pathway (Pateman and Kinghorn, 
1976). The requisite cofactors for enzymes of the 
nitrate reduction pathway include molybdenum/ 
iron (nitrate reductase), copper/iron (nitrite re- 
ductase) and magnesium/manganese (hydroxyl- 
amine reductase) (Garraway and Evans, 1984). 
Since these metal ions were present in basal me- 
dium, lack of nitrate utilization could not be at- 
tributed to cofactor deficiency. The endophyte 
was not able to utilize urea (TABLE II). A specific 

TABLE I 

GROWTH OF ACREMONIUM COENOPHIALUM ON BASAL 

MEDIUM SUPPLEMENTED WITH AMMONIUM SULFATE 

AND VARIOUS CARBON SOURCES 

Carbon source Dry weighta + SD 

Pentoses 
D-arabinose 
D-ribose 
D-xylose 
D-lyxose 

Hexoses 
D-fructose 
D-galactose 
D-glucose 
D-mannose 
L-sorbose 
L-rhamnose 

Disaccharides 
Maltose 
Lactose 
Sucrose 
Trehalose 

Oligosaccharide 
Raffinose 

Polysaccharides 
Soluble starchb 
Pectinb 
Celluloseb 

Carboxylic acids 
Acetatec 
Citratec 
Propionatec 

Polyols 
D-arabitol 
L-arabitol 
D-galactitol 
Glycerol 
D-sorbitol 
D-mannitol 
Ribitol 
Xylitol 

Uronic acids 
D-galacturonic acid 
Polygalacturonic acidb 

0 
2+1 
2+ 1 
5 1 

69 + 22 
1 + 0.6 

43 + 12 
50 + 3.8 
4+ 1 
2+ 1 

4 + 0.5 
3+ 1 

50 + 22 
100 18 

61 + 10 

14 1 
0 
0 

0 
0 
4 + 0.6 

20 + 3 
8+ 1 

21 + 8 
12 + 0.6 
72 + 20 

111 + 18 
15 + 2 
7 + 0.6 

3+ 1 
3+ I 

a Dry weights (mg/20 ml medium) are expressed as 
means + standard deviations of three different exper- 
iments. Controls that did not have a carbon source 
weighed 3 + 1 mg. 

bPolysaccharides and polygalacturonic acid was 
added at a final concentration of 5 g/l. c The sodium salt of the carboxylic acid was used. 

transport system for urea has been reported in 
Aspergillus nidulans (Dunn and Pateman, 1972). 
Urea is generally broken down to ammonia and 
carbon dioxide by the enzyme urease; hence urea 
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TABLE II 

GROWTH OF ACREMONIUM COENOPHIALUM ON BASAL 

MEDIUM SUPPLEMENTED WITH GLUCOSE AND VARIOUS 

NITROGEN SOURCES 

Nitrogen source Dry weighta + SD 

Ammonium chloride 35 ? 6.9 
Ammonium nitrate 40 + 5 
Potassium nitrate 9 + 2 
L-alanine 3 + 1 
L-arginine hydrochloride 34 + 12 
L-asparagine 42 ? 2.6 
L-cysteine hydrochloride 31 + 3 
L-glutamine 60 + 13 
Glycine 5 ? 1 
L-histidine hydrochloride 3 + 1 
L-leucine 5 + 0.5 
L-lysine monohydrochloride 5 + 0.5 
L-methionine 3 ? 1 
L-phenylalanine 3 + 1 
L-proline 61 + 5.5 
L-serine 36 + 1.5 
L-tryptophan 1 + 1 
Urea 1 + 1 
Soytoneb 183 ? 35 
Yeast extractb 129 + 27 
Peptoneb 85 ? 12 
Casamino acidsb 55 + 2.5 
Tryptoneb 205 + 16 

a Dry weights (mg/20 ml medium) are expressed as 
means + standard deviations of three separate exper- 
iments. Controls that did not have a nitrogen source 
weighed 13 + 2 mg/20 ml. 

b These complex nitrogen sources were added at 2 
g/l. 

may serve as a nitrogen source in several fungi 
(Pateman and Kinghor, 1976). The lack of urea 
utilization in A. coenophialum could be due to 
the absence of an uptake system or absence of 
urease. 

Amino acids that were good nitrogen sources 
(TABLE II) included L-arginine, L-asparagine, 
L-cysteine, L-glutamine, L-proline, and L-serine. 
These findings are in agreement with previous 
reports on amino acid utilization by filamentous 
fungi (Pateman and Kinghorn, 1976), although 
L-cysteine may be toxic to certain fungi. Al- 
though good growth occurred on peptone and 
casamino acids, soytone, tryptone and yeast ex- 
tract supported excellent growth. Several amino 
acids did not support fungal growth (TABLE II), 
including L-alanine, glycine, L-phenylalanine and 
L-tryptophan. The amino acid transport system 
in fungi may have broad specificity, e.g. neutral 
aliphatic and aromatic amino acids in Neurospo- 
ra crassa (Pall, 1969), or the transport system 

TABLE III 

GROWTH OF ACREMONILCM4 COENOPHIALUM1 ON 

MINERAL SALTS MEDIUMa SUPPLEMENTED WITH 

GLUCOSE, AMMONIUM SULFATE AND VARIOUS VITAMINS 

OR GROWTH FACTORS 

Concentra- 
Vitamin(s) and tion per Dry weight 
growth factors liter + SD 

Biotin 20 Atg 24 ? 1 
Folic acid 100 ,tg 22 ? 2 
Inositol 5 mg 19 ? 1 
Nicotinic acid 200 ,g 23 ? 1 
Pantothenic acid 200 ,g 19 ? 2.6 
Pyridoxine 200 ug 23 ? 1 
Riboflavin 200 ig 25 ? 2.5 
Thiamine 200 ug 48 ? 4 
Vitamin B,2 200 ug 19 + 1.6 
All of the above 52 ? 3.8 
All of the above but 

thiamine 20 ? 3.0 
Yeast extract 0.05 g 48 ? 5.0 
No vitamins 19 -? 1.5 

Combinationsb 
Vitamin mixture 40 + 3.0 
All but biotin 41 ? 1.5 
All but nicotinic acid 40 + 4.6 
All but pyridoxine 38 ? 6 
All but thiamine 12 ? 4.9 
All but vitamin B12 38 + 4 
a The mineral salts medium had the same constitu- 

ents as the basal salts medium except yeast extract. 
b The vitamin mixture contained biotin, nicotinic 

acid, pyridoxine, thiamine and vitamin B,2 at the re- 
spective concentrations, one vitamin was left out in 
some cases to determine if it was required for growth. 

may be specific, e.g. L-proline transport in Pen- 
icillium chrysogenum (Hunter and Segel, 1971). 
Lack of amino acid utilization, therefore, could 
be due to lack of uptake, or lack of one or more 
enzymes in the catabolic pathway. 

Vitamin requirements. -At first the basal salts 
medium containing glucose and ammonium sul- 
fate was supplemented with individual vitamins 
(TABLE III) or inositol. Only thiamine signifi- 
cantly stimulated growth in the defined medium. 
The growth was comparable to that obtained by 
supplementing the medium with yeast extract. 

To determine if there were any synergistic or 
additive effects of vitamins on fungal growth, a 
combination of vitamins was further investigat- 
ed. One vitamin at a time was left out. All com- 
binations yielded approximately equivalent 
amounts of growth when thiamine was included 
in the vitamin mixture. However, when thia- 
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