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The spherical beam volume hologram, recorded by a plane wave and a spherical beam, is investigated for
spectroscopic applications in detail. It is shown that both the diffracted and the transmitted beam can
be used for spectroscopy when the hologram is read with a collimated beam. A new method is introduced
and used for analysis of the spherical beam volume hologram that can be extended for analysis of
arbitrary holograms. Experimental results are consistent with the theoretical study. It is shown that
the spherical beam volume hologram can be used in a compact spectroscopic configuration when the
transmitted beam is monitored. Also, on the basis of the properties of the spherical beam hologram, the
response of a hologram recorded by a plane wave and an arbitrary pattern is predicted. The information

can be used to optimize holographic spectrometer design. © 2004 Optical Society of America
OCIS codes: 090.7330, 300.6190, 070.2590.

1. Introduction

Sensitive high-resolution compact spectrometers are
required for environmental and biosensing. Separa-
tion of information of different wavelength channels in
spectroscopy requires a dispersive (or wavelength-
selective) device, which is implemented by a grating in
conventional spectrometers. To avoid ambiguity and
irresolvable overlap of different wavelength channels
in the output for a spatially incoherent (or diffuse)
input, spatial filters are used in conventional spec-
trometers to limit the angular range of the incident
beam. Unfortunately, spatial filtering drastically re-
duces the photon throughput for diffuse sources. This
is a major limitation when conventional spectrometers
are used for weak diffuse sources, such as those gen-
erated in Raman spectroscopy.

Recently, multimode multiplex spectroscopy was
proposed based on use of a weighted projection of mul-
tiple wavelength channels (i.e., multimode) of the in-
cident signal to increase the spectrometer sensitivity.!
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The output signal in multimode multiplex spectros-
copy is composed of multiple wavelength channels, and
the information of each channel is separated by the
postprocessing of the detected signal. The key ele-
ment in multimode multiplex spectroscopy is a spec-
tral diversity filter (SDF) that maps a homogeneous
but diffuse spectral source onto a spatially encoded
pattern. Measuring the output light intensity over
the output plane by a detector array (for example, a
CCD camera) and inverting the spectral—spatial map-
ping (as outlined in Ref. 1) enables spectral estimation.

Construction of SDFs is constrained by the con-
stant radiance theorem.2 According to the constant
radiance theorem, it is not possible to produce spatial
patterns from a diffuse source without an increase in
the mode volume or a reduction in the photon
throughput. In contrast with conventional spectros-
copy, however, throughput losses with SDF's can be
independent of spectral resolution. SDF's have been
demonstrated with an inhomogeneous three-
dimensional photonic crystal.! Under the photonic
crystal approach, the input—output mode volume is
fixed, but a spatially structured fraction of diffuse
incident light 1is reflected. Although three-
dimensional photonic crystals are attractive as su-
perdispersive elements, they are hard to fabricate
based on an arbitrary design. Thus other (more des-
ignable and manufacturable) schemes for the devel-
opment of SDF's are needed.

We recently proposed and demonstrated the feasi-
bility of using spherical beam volume holograms
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(SBVHs) as SDFs.3+ A SBVH is composed of mul-
tiple gratings, and the Bragg condition allows for the
conversion of a spatially uniform spectrum into a
spatial-spectral pattern with a different spatial dis-
tribution for different wavelength channels.? It was
shown qualitatively that the spectral diversity per-
formance of these holograms depends on the degree of
spatial coherence of the input signal. Although pre-
vious results show qualitatively that it is feasible to
use SBVHs for SDF's, much effort is needed to opti-
mize the performance of these filters, most probably
by means of multiplexing several holograms with op-
timal patterns. Such an optimization procedure will
be more efficient if accurate theoretical models for the
performance of these SDF's are available.

In this paper we describe an efficient model for the
design and analysis of general volume holograms for
SDFs. We first describe, in Section 2, a new theoret-
ical approach that is used to model SBVHs and their
diffraction properties. Using this approach, we ana-
lyze the major properties of holographic SDFs in Sec-
tion 3 and compare those results with experimental
data in Section 4. Further discussion of these holo-
graphic SDFs are presented in Section 5, and final
conclusions are made in Section 6.

2. Analysis of Spherical Beam Volume Holograms with
the Multigrating Approach

We introduce and implement a new approach to
analyze the SBVHs. In general, this approach can
be used for any hologram recorded by the interfer-
ence pattern of an arbitrary coherent beam and a
plane wave or even two arbitrary beams. This ap-
proach can be used to find the diffracted beam from
the hologram when read by a plane wave at any
wavelength. The model can be further extended to
analyze the case for an arbitrary reading beam.
The proof of this approach is presented in Appendix
A for a general case. In this section we explain the
method for diffraction analysis of a SBVH.

Figure 1 shows general recording and reading
setups for SBVHs. The interference pattern of a
plane wave and a spherical beam (from a point
source) records a SBVH as shown in Fig. 1(a). The
recording medium has a thickness of L in the z
direction. It is assumed that the transverse di-
mensions of the recording material are large com-
pared with L. The point source located at r, =
(—a, 0, —d) is formed by a lens with a high numer-
ical aperture. The vector r, makes an angle 6,
with the z axis. Therefore a is equal to d tan(f,) in
Fig. 1(a). The reference beam is a plane wave with
an incident angle 6, with respect to the z axis.
Both recording beams are at wavelength A with TE
polarization (i.e., electric field normal to the inci-
dent x—z plane).

To analyze the SBVH recorded in the medium, we
first expand the spherical beam at distance r = (x, y,
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Fig. 1. (a) Recording geometry for a SBVH. The point source is
at distance d from the center of the crystal. The reference beam
incident angle is 6,. A line from the coordinate origin to the point
source makes an angle 6, with the z axis. (b) Reading configura-
tion. A collimated beam reads the hologram with a 6, incident
angle. Note that the direction of the reading beam corresponds to
the direction of the signal beam in the recording configuration.
The diffracted beam propagates in a direction that makes an angle
0', with the z axis. The thickness of the holographic material is L
in both cases.

z) from the point source at r, = (—a, 0, —d) as a set
of plane waves?:

ke = [
|r—r0|eXpJ r—r, = om .

X exp[ jk,(z + d)]
X exp(jk.a)expl j(k,x
+ kyy)]dk.dk, 1)

where k., k,, and &, are the x, y, and z components of
the wave vector Kk, respectively. The magnitude of
the wave vector is shown by k2. In the expansion of
Eq. (1), each component is a plane wave propagating
in the direction of unit vector 4, given by

k (k2 _ kx2 _ ky2)1/2 .
k i

(2)



where, in general, @1 indicates the unit vector in the u
direction. The constant amplitude and phase of
each plane-wave component is given by

J

Alkoky) = 52— 1

2 2\1/2 exp(jk.a) exp(jk.d) .
k2

3

Note that in Eq. (1) the integrations are, in general,
over all the possible values of k2, and k,. However,
for the values of |k,| > & or |k | > k, the z component
of the propagating vector becomes imaginary, which
represents an evanescent wave. The evanescent
wave whose amplitude decreases rapidly with z can
be neglected in the estimation of the integral. Thus
the integrals in Eq. (1) essentially take the same
values whether they are performed over a circle of
radius £ (i.e., k> + k% = k?) or over the entire k&,
plane (i.e., from —« to +«). Therefore we omit the
range of the integrals in this paper.

The interference of each plane-wave component
(traveling in the direction &,) with the reference
plane wave records a hologram inside the medium.
If we represent the wave-vector components of the
spherical beam with (%, k., k£,) and the incident plane
wave with (k,, 0, k) = |k sin (8,), 0, & cos(6,)], the
effect of the interference pattern on the dielectric
constant of the medium can be represented as

e(r) = gy + Ae(k,, k)exp(JK, 1) + cc., (4)
where the grating vector K, is given by
K, =(k,— k)z. (5)

The modulation term A€ is proportional to the ampli-
tudes of the two recording plane waves (the reference
beam and a plane-wave component of the signal
beam), and therefore it is proportional to A(k,, k,).
Note that in this analysis we assume that the absorp-
tion of the reading beam is weak.

Figure 1(b) shows the reading geometry that is
used for holographic SDFs. Note that the reading
beam replaces the spherical beam (and not the plane-
wave reference beam). We assume that during
readout the hologram is illuminated with an approx-
imately collimated beam at wavelength \'. The di-
rection of propagation of the reading beam makes an
angle 0," with the z axis as shown in Fig. 1(b). Read-
ing a hologram usually results in both a diffracted
beam and a transmitted beam in the output. The
main direction of propagation of the diffracted beam
makes an angle 0,” with the z axis. Inthe case of A =
N and 6, = 6, (i.e., Bragg-matched readout), the
diffracted beam is in the direction of the reference
beam as shown in Fig. 1(b), i.e., 6,/ = 6,.

The diffracted beam can also be expanded as a sum
of plane waves, each corresponding to diffraction of the
reading beam by a plane-wave hologram formed by the
reference beam and one of the plane-wave components
of the recording signal beam described above. To find
the diffracted beam from a SBVH, we have to add the
diffracted beams from all the different gratings.

k)X + (=k)§ + (k. —

Recording

k-sphere

Reading

Fig. 2. (a) Recording configuration represented in the 2 domain.
The major angular extent of the spherical beam is indicated by A6
in the 2 domain. (b) Reading configuration in the £ domain. In
general, the reading wavelength is different from the recording
one. Ak,'is ameasure of a partial Bragg-matched condition. All
other parameters are the same as those in Fig. 1.

Since the wavelength of the reading beam is, in gen-
eral, different from the recording wavelength, the
dual-wavelength method® should be used to analyze
the diffraction from each grating. The k-space repre-
sentations of the recording and reading configurations
are shown in Figs. 2(a) and 2(b), respectively. The
relations between the Bragg-matched angles (6,” and
0,') and the recording angles (6, and 6,) are®

1 (6,+6)\ 1 (6 +8, ©
N sin 9 Y sin 9 ,
0, —0,=6,"—6,. (7

Knowing 6, and 6, in Egs. (6) and (7), the un-
knowns are 6, (the signal beam component whose
corresponding grating is Bragg matched by the read-
ing beam at 6,') and 0,’ (the angle of the diffracted
beam). When we solve Egs. (6) and (7), 6, is found,
and therefore the specific grating that is exactly
Bragg matched to the collimated reading beam is
identified. Other hologram components with grat-
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ing vectors different from the Bragg-matched one are
partially Bragg matched by the reading beam at 6,'.
All these diffractions must be considered to find the
complete diffracted beam.

The amplitude of each diffracted beam component is
found by use of Born’s approximation (as in Ref. 7) with
a reading wavelength (in general) different from the
recording wavelength. The validity of Born’s approx-
imation for these calculations is justified since each
plane-wave component causes a low-index modulation.
Different components of the diffracted beam will be
added to find the total output beam. By use of Born’s
approximation, the electric field of the diffracted beam
from each hologram component is?

’2

jAek"L
zsokdz’

X exp[j(Kgy + ksy,)y] eXp(jde,Z)

E k., k,, 2z) = expl j(K,, + k') x]

L
X sine| o — (K. + k. — k)|, (8
2

where the propagation vector of the reading beam is as-
sumed to be (&', k', k;,") with magnitude &', and sinc(u)
= gin(mu)/(wu). In the configuration shown in Fig. 2(b),
the reading beam has a propagation vector of [(k sin(6,’),
0, &' cos(8,")]. Note that in general &’ = 2m/\’ is differ-
ent from & = 2m/\, where A and \’ are the recording and
reading wavelengths, respectively. The z component of

the diffracted beam %, can be found from
kdz’ = [k/? - (Kgx + ksx,)2 - (Kgy + ksy/)2]1/2 . (9)
Substituting for K, from Eq. (5),

kdz’ = [er - (er + ksx, - kx)z - (ksy, - ky)2]1/2 . (10)

Note that each hologram component is represented
by one set of (k,, k,) in the plane-wave expansion of
the recording signal beam.

Combining all the diffraction beam components,
the output (diffracted beam) is given by

Ed(x7 Y Z) = ijd(kxa ky’ Z)dkxdky . (11)
Let us define E,;' (k,, k,, ) as

Ed’(kxa ky’ Z) = 4172Ed(kx9 kya Z) eXp[J(kxx
+ k.’)’y)] exp[_j(er
+ k') xlexp(—jks,'y)
_j2m?Aek’’L

exp(jky'z
ek p(Jka.'2)

L
X sinc| — (K,, + k., —kg')|. (12)
27
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Then the integral in Eq. (11) can be represented as
the inverse Fourier transform of E,;'(%,, k,, 2) as

explj(k,. + k") xlexp(jks,'y)
Ed(x, Y 2) = 4’“_2 >

X ffEd’(kx, ky, z)expl—j(k.x + ky,y)]
x dk,dk, , (13)

or

Ed(x7 Y, 2) = eXp[j(er + ksx’)x] exp[jksy,y]
X Fﬁl{Ed,(kxa kya Z)H;::i ) (14)

where F~ ! represents the inverse Fourier operation.

3. Analysis of Spherical Beam Volume Holograms as
Spectral Diversity Filters

When a SBVH is read by a collimated beam with a
angle 6, with respect to the z axis, the diffracted
beam can be found when we combine Eqs. (12) and
(14). Note that the recorded hologram is repre-
sented by the change in the dielectric constant Ae.
We substitute Ae for the SBVH in Eq. (12) and ex-
pand k, and k.’ in terms of small x and y components
of k and k,; using binomial expansion (paraxial ap-
proximation). We also assume z << d and neglect
the small variations for the amplitude because of the
1/k;,' term in Eq. (12). All these assumptions are
valid for practical implementation of SDFs by use of
SBVHs. Using these approximations, we can sim-
plify the output-diffracted beam as

Ed(x7 Y, Z) = ClFl{eXp(.]kxa)eXp[_ 2‘]7]3

X (k. + kxz)d} sinc[(ng + k'

L
- kdz')%”

where C; is a complex constant that includes all
terms that do not depend on %, or k,. The phase
factor outside the integral in Eq. (15) (tﬁe phase of C,)
does not affect the spatial intensity distribution of the
diffracted beam right after the hologram. Thus we
do not explicitly consider it in the rest of our deriva-
tion (they are still included in C;). This closed-form
inverse Fourier transform can be found approxi-
mately by use of the properties of the Fresnel trans-
form.8 For simplicity we show the approach for the
case in which the reading beam is normal to the
hologram (i.e., ;" = 0 or k" = k.’ = 0). For the
more general case, the approach is the same but more
algebraic manipulations are needed.

) (15)

x—>—x
y=y




Rewriting Eq. (15) in terms of the inverse Fourier-
transform integral and representing every parameter
in terms of &, and &, we find that

kd [k, x—a\?
sl 5[5

L |dk,dk
X si A P P
smc[(KgZ k' — kg, )217} P
(16)
where C, is another complex constant. The integral

in Eq. (16) is the Fresnel transform with parameter
o = kd/2.8 For o with a very large absolute value
(i.e., |a|] — «), the Fresnel transform of a function
becomes the function itself with a proper change of
variable. In Eq. (16), the integrand has a nonzero
value for |k, /k| = 1 and |k, /k| = 1 and rapidly goes to
zero for |k, /k| > 1 or |k,/k] > 1 as discussed in Section
2. Therefore a is very large [typically d > \ in Fig.
1(a)] compared with the integration variables.
Therefore, as an approximate solution, the result of
the integral in Eq. (16) is the sinc function with in-
tegration variables k,/k and k,/k replaced by (x —
a)/d and y/d, respectively, i.e.,

d d)ew
where again Cj is another complex constant and the
function flu, v) is

flu,v)=k,+k — k(1 —u?— )2
k/2 k 2 1/2
T

x—a y) L

E x,y,2)=C,4 sinc{ f( ] , a7

“k e k

For the simple case of \ = \’, and foru = 1 and v =
1, we have

k[T _osin@®) 7
flu, v) = 2 cos(0,) YT cos(9,) v
sin(6,) |?
1+ cos(er)} ] ’ (19)

Note that in approximation (19) we used &,, = k sin
(0,) and %,, = & cos(6,).

It is clear from approximation (17) that the dif-
fracted beam intensity is maximum when the argu-
ment of the sinc function [and thus flu, v)] is zero.
The minimum intensity is zero and it occurs when we
have

voay|_ 2w
f( p ,d>—mL, (20)

with m being a nonzero integer.
From the definition of the function f{u, v), given by
Eq. (18), it is clear that the loci of the points with a

constant diffracted intensity (for example, maximum
or zero) are a circle. If we consider only the dif-
fracted signal in the main lobe of the sinc function in
approximation (17), the diffracted beam will resem-
ble an annulus whose intensity is maximum at the
center and goes to zero at the edges at which Eq. (20)
holds for m = *=1.

Figure 3(a) shows the theoretical calculations of
the pattern of the diffracted beam of a SBVH re-
corded with the setup in Fig. 1(a) with d = 1.6 cm and
N = 532 nm. The holographic material is assumed
to have a refractive index of 1.5 and a thickness of 100
pm. The angles 6, and 6, are chosen to be 45° and 0°,
respectively. For these calculations, we assumed
the dimensions of the holograms in the x and y direc-
tions to be 1.5 and 1.5 cm, respectively. A normal
incident beam at a 700-nm wavelength reads the ho-
logram. The coordinate origin is shown by O in Fig.
3(a). The dashed box represents the corresponding
output region for a hologram with practical dimen-
sions of 3.5 mm X 3.5 mm. The diffracted pattern
from this smaller-size SBVH is shown in Fig. 3(b).
It is clear that, because of the smaller size of the
hologram, only a portion of the diffracted annulus
(which we call a crescent) appears in the output.
The existence and some properties of these crescents
were experimentally demonstrated recently.34

Using approximation (17) and Eq. (20) we can de-
termine several properties of the diffracted crescent.
For example, we can calculate the width of the cres-
cent by having y = 0 and finding the distance between
the zeros of the main lobe of the sinc function in
approximation (17). For the case of identical record-
ing and reading wavelengths, the result is

2d\

w = I cot(0,) . (21)

If we consider the refractive index of the holographic
recording material to be n, we can write the width of
the crescent as

o1

L

W, = COt(er,inside) ’ (22)
where subscript a means the parameter measured in
the air. The reference angle (6,) should be measured
inside the material for Eq. (22).

The location of the center of the crescent (maxi-
mum intensity) also depends on the reading wave-
length A'. For example, at the y = 0 plane, the
crescent is located at

a n 2kr’(k - krz -k + kr,) + er2 V2
d k(k+ k) (k+ k')

(23)

Note that 2" and &,’ are functions of the reading wave-
length \'. This wavelength dependence of the loca-
tion of the crescent is the main factor in SBVHs that
makes SDFs. Figure 4 shows the diffracted crescent
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Fig. 3. (a) Theoretical calculations of the pattern of the diffracted
beam of a SBVH recorded with the setup shown in Fig. 1(a) withd =
1.6 cm and A = 532 nm. The angles 6, and 6, are chosen to be 45°
and 0°, respectively. The holographic material is assumed to have
a refractive index of 1.5 and a thickness of 100 pm. For these
calculations, we assumed the dimensions of the holograms in the x
and y directions to be 1.5 and 1.5 cm, respectively. The hologram is
read by a beam with normal incidence (i.e., propagation along the z
axis) at a wavelength of 700 nm. The origin of the coordinate
system is shown by O. (b) The diffracted beam pattern of the same
SBVH as in (a) but with lateral dimensions of 3.5 mm X 3.5 mm.
The corresponding hologram is shown by the dashed box in (a).

calculated with different reading wavelengths of 532,
630, and 700 nm with a normal incident angle. All
other parameters are the same as those used for Fig. 3.
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Fig. 4. Different crescents for reading with different wavelengths

of 532, 630, and 700 nm. All other parameters are the same as
those described in the caption of Fig. 3(b).

The wavelength dependency of the location of the cres-
cent can be clearly seen in Fig. 4.

We can also calculate the transmitted beam field
pattern (E,) by subtracting the diffracted field pattern
(E,) from the incident beam pattern (E.,), i.e.,

E.=E,-E,;. (24)

To calculate the exact value of the field, we can find
the inverse Fourier transform in Eq. (14) numeri-
cally. We use two-dimensional inverse fast Fourier
transform in MATLAB with an adequate sampling rate
to verify the approximated approach. We found that
the exact numerical results agree well with the ap-
proximate results derived above when we simplified
Eq. (14). Even with the numerical computation, the
method we use to find the diffracted signal is more
efficient than the more conventional Born approxi-
mation® from a computational point of view. Our
method gives the diffracted beam over the desired
output plane by calculating only one integral, which
can be easily implemented with efficient inverse
Fourier-transform techniques such as inverse fast
Fourier transform.

4. Experiments

To investigate the properties of the SBVHs for spec-
troscopy and to check the validity of the theoretical
results obtained by the proposed method, we recorded
several transmission geometry SBVHs using the
setup in Fig. 1(a). The recording material was Apri-
lis photopolymer.1® The thicknesses of the samples
used were 100, 200, or 300 pm. The recording wave-
length was 532 nm. The values of 6, and 6, were
—9.6° and 44°, respectively. These angles were se-
lected to allow the operation of the SDF with the
normal incident angle at a reading wavelength of
around N’ = 800 nm. The distance of the point
source to the hologram (d) varied in the range from
1.6 to 12 cm for different holograms. Both recording
beams were TE polarized.

To investigate the performance of SBVHs as SDF's,



Fig. 5. (a) Diffracted beam from a SBVH illuminated by an ap-
proximately collimated white-light beam from the direction of the
spherical recording beam. The white light is from a regular 60-W
lamp. The white screen is approximately 20 mm from the holo-
gram. The hologram is recorded with the setup shown in Fig. 1(a)
with d = 1.6 cm and A = 532 nm. The holographic material is
Aprilis photopolymer with a refractive index of 1.5 and a thickness
of 100 pm. The angles 6, and 6, in the recording setup are —9.6°
and 44°, respectively. (b) The transmitted beam through the
SBVH when illuminated by a collimated beam at A = 700 nm at a
normal incident angle (6’; = 0°). The reading light is obtained
when a white-light beam is passed through a monochromator with
an output aperture size of 0.45 mm. The full width at half-
maximum of the output spectrum of the monochromator at a
700-nm wavelength is approximately 3 nm. The output of the
monochromator is collimated with a collimating lens. The dark
crescent in the transmitted beam can be clearly seen. The dots in
the figure correspond to the imperfection in the material.

we read each hologram with reading beams at differ-
ent wavelengths using the setup in Fig. 1(b). For
each reading beam, we monitor both the diffracted
beam (diffracted at an angle 6,” and focused on a
screen) and the transmitted beam (at the back face of
the hologram using a zoomed CCD camera). We can
monitor the spectral diversity of the diffracted beam
by reading the hologram with white light. Figure
5(a) shows the diffracted beam from a SBVH that is

W & - 3 -

Fig. 6. Transmitted beam through the SBVH when read by an
approximately collimated white-light beam from the direction of
the spherical recording beam. The hologram is the same as that
described in the caption of Fig. 5(a).

illuminated by an approximately collimated white-
light beam (from a regular 60-W lamp) from the di-
rection of the spherical recording beam (i.e., 6,/ =
—10°). The white screen is approximately 20 mm
from the hologram. It is clear that different wave-
length channels (or colors) of the incident beam are
separated at this output plane.

Figure 5(b) shows the transmitted beam through a
SBVH when illuminated by a collimated beam at \' =
700 nm at a normal incident angle (6, = 0°). The
incident light is obtained when a white-light beam is
passed through a monochromator with an aperture
size of 0.45 mm. The full width at half-maximum of
the output spectrum of the monochromator at a
700-nm wavelength is approximately 3 nm. The
output beam of the monochromator is collimated with
a collimating lens. The dark crescent in the trans-
mitted beam resembles the diffracted crescent dis-
cussed in Section 3. The shape of this dark crescent
is defined by the Bragg selectivity of the SBVH in the
x direction in Fig. 1(b). The position of the crescent
depends on the incident wavelength and on the inci-
dent angle. When the hologram is read with a col-
limated white-light source, several color crescents
appear in the transmitted beam. This is shown in
Fig. 6. The color of each crescent corresponds to the
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reduction of a diffracted crescent at a specific wave-
length from the incident white light.

For quantitative measurements, we define two
measures for the dark crescent seen in the output.
The first measure is the width of the crescent, which
is defined as the distance between the edges of the
dark crescent at the back face of the hologram in the
x direction aty = 0. This measure is directly related
to the resolution of the spectrometer. The thinner
the crescent, the finer the wavelength resolution of
the spectrometer. The other measure is the curva-
ture of the crescent. This measure helps us to char-
acterize the expected shape of the detecting signal.
It also gives us the information that is useful for the
design of rotation-multiplexed spherical beam holo-
grams.3

Figure 7(a) shows the variation of the crescent
width with the distance between the point source and
the recording material during recording (i.e.,d). We
obtained the experimental results by recording five
holograms at A = 532 nm for five different values of d
and reading them at both A’ = A = 532 nm (squares)
and N’ = 830 nm (diamonds). The variations asso-
ciated with the measurements are also shown as the
corresponding error bars. The error bars represent
the range of crescent widths measured at different
heights of each crescent (i.e., a different value of y in
Fig. 4) close to the crescent center (y = 0). We also
show in Fig. 7(a) the theoretical variations of the
crescent width with d, using our theoretical model.
The difference between theory and experiment is less
than 7%. The limited bandwidth of the reading in-
cident beam (approximately 3 nm FWHM) is the
main source of this error. Considering this band-
width, the theoretical result will be increased approx-
imately 8%, reducing the total difference between the
theory and experiment to less than 5%. We used a
lens to form the point source of the spherical record-
ing beam. The size of the resulting beam at focus is
finite (nonzero). This is an important reason for the
difference between the theoretical and experimental
results in Fig. 7(a).

As it is clear in Fig. 7(a), the dark crescent becomes
wider as d increases. To understand this variation,
we can use a ray-optics approach!! to relate the co-
ordinates of each point in the hologram to the inci-
dent % vectors in the recording spherical beam that
originate from the point source. When we increase
d, the difference between the & vectors of two fixed
points in the hologram plane becomes smaller. On
the other hand, the Bragg condition of the hologram
allows us for a fixed range of Ak of the original grating
vectors to Bragg match an incident collimated beam.
Thus, when we increase d, the Bragg-matching re-
gion in the £ domain (i.e., A%) corresponds to a larger
range in the space domain, resulting in a wider cres-
cent. In the extreme case as d — «, the spherical
beam becomes a plane wave and the Bragg-matched
diffracted beam becomes a plane wave as well, result-
ing in a dark crescent that is infinitely wide for 100%
diffraction efficiency.

Figure 7(b) shows the variation of the crescent
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Fig. 7. (a) Variation of the crescent width with the distance be-
tween the point source and the recording material during record-
ing [i.e., d in Fig. 1(a)]. Five different holograms are recorded at
\ = 532 nm, each with a different value of d. All other recording
parameters are the same as those described in the caption of Fig.
5(a). The hologram is read at both A\’ = 532 nm and A’ = 830 nm.
(b) Experimental and theoretical variation of the crescent width
with a hologram thickness for 100-, 200-, and 300-pm-thick sam-
ples. The recording point source is at a distance of d = 1.6 cm
from the hologram for all cases. All other recording parameters
are the same as those described in the caption of Fig. 5(a). In both
plots, squares and diamonds with the error bars show the exper-
imental results for the reading at 532- and 830-nm wavelengths,
respectively. The solid curves show the corresponding theoretical
results based on the model described in this paper. In both (a)
and (b) the error bars represent the range of crescent widths mea-
sured at different heights of each crescent (i.e., different values of
y in Fig. 4) close to the crescent center (y = 0).

width with hologram thickness. Again, the experi-
mental results for the reading at A’ = 532 nm and \’
= 830 nm are shown with squares and diamonds,
respectively, for three different thicknesses. The
corresponding error bars as well as the theoretical
variations of the width of the crescent as a function of
the hologram thickness for reading at 532- and
830-nm wavelengths are also shown. Asin Fig. 7(a),



the error bars represent the range of crescent widths
measured at different heights of each crescent close
to the crescent center (y = 0). The finite bandwidth
(approximately 3 nm) of the reading beam is taken
into account for these calculations. The agreement
between theory and experiment is good, and, on av-
erage, the theoretical results are within 10% of the
experimental ones. More accurate results are pos-
sible with the numerical inverse Fourier transforma-
tion as described above. Again, the finite size of the
experimental point source mainly contributes to the
difference between the theoretical and experimental
results. Figure 7(b) shows that thicker holograms
result in narrower crescents (i.e., better spectral di-
versity) with all other parameters fixed. We explain
this by noting that thicker holograms have better
wavelength and angular selectivity. Thus the range
of grating vectors (i.e., Ak) that diffract the incident
collimated beam becomes smaller as the hologram
becomes thicker, resulting in a smaller diffracted
crescent.

The theoretical and experimental shape of the dark
crescent read at A’ = 532 nm and \' = 830 nm are
depicted in Figs. 8(a) and 8(b), respectively. The
reading beam incident angle is approximately 13° for
N = 532 nm. The hologram thickness is 300 pm.
All other parameters are the same as those described
in the caption of Fig. 5. The agreement between
theory and experiment in both cases is good. Note
that we assumed that a spherical beam originated
from a true point source in our theoretical analysis,
which is different from the actual experimental con-
dition. Again, the finite size of the point source in
the experiments is the main reason of the difference
between the theoretical and experimental results.

5. Discussion

The mapping of different wavelengths to different
crescents by SBVHs (as shown in Fig. 4) is useful for
the design of compact spectrometers. For these
SBVHs, the output signal can be detected at the back
face of the hologram, which allows for compact de-
signs. A main limitation of such holographic spec-
trometers for use with incoherent light is caused by
the ambiguity between the wavelength and the angle
of the incident beam in the Bragg condition.? For
example, the size of the crescent in Fig. 5(b) becomes
larger when the divergence angle of the incident
beam increases since the crescents corresponding to
different reading plane waves of the same wave-
length but different angles of incident occur at differ-
ent (but close to each other) locations. The same
behavior is observed if we keep the incident angle
constant but increase the wavelength range of the
reading beam. It was shown in Ref. 4 that the ac-
ceptable divergence angle for a SBVH spectrometer
that can still resolve a dark crescent is 45° in trans-
mission geometry and more than 45° in reflection
geometry. One interesting feature of the SBVH is
the Fresnel transform relation between the £ domain
and space domain in these holograms. In conven-
tional plane-wave holograms used in spectroscopy,

(b)

Fig. 8. Theoretical and experimental shape of the dark crescent
in the transmitted beam when the SBVH is read at (a) A’ = 532 nm
and (b) A’ = 830 nm. All parameters are the same as those
described in the caption of Fig. 5(a).

this relation (£ domain to space domain) is governed
by a Fourier transformation. Thus decreasing the
size of the diffracted beam in one domain results in an
increase in the size of that in the other domain. In
the Fresnel transform, on the other hand, the qua-
dratic phase factor caused by a spherical recording
beam allows for similar variations of size in the two
domains. The limitation on this relation is imposed
by the distance of the point source to the hologram (d)
and the plane in which the dark crescent is observed
[L in Fig. 1(a)].

We believe that optimal holographic SDFs must be
designed by use of a more complicated spatial profile
for the recording beam (compared with a spherical
beam). Such a hologram can be recorded by means
of interfering a plane wave and a modulated beam
obtained when another plane wave is passed through
a spatial light modulator (SLM). Having a reliable
and efficient simulation tool is essential for the opti-
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mization of such holograms. We believe that the
method presented here can efficiently be used for
such optimization. In analyzing a hologram re-
corded by a plane wave and a beam from a SLM, we
treat each pixel of the SLM as a point source and
combine the output crescents corresponding to all
these point sources. Since the analysis of the point
source (i.e., pixel) can be done by analytic formula-
tion, we can combine this technique with sophisti-
cated optimization schemes such as simulated
annealing?? to find the optimal SLM pattern.

6. Conclusions

We presented a simple and efficient technique for the
analysis of diffraction from SBVHs. We showed
that the output of a SBVH read by a collimated mono-
chromatic plane wave could be found by use of a
Fresnel transform. In special circumstances (which
happen in most practical applications), the Fresnel
transform can be simplified to an identity transfor-
mation by a proper change of variables.

The method presented here can be extended to an-
alyze more complicated holograms when read by
plane waves. Although we used the proposed
method to analyze holographic SDF's, the method is
quite general and can be used for any other applica-
tion of SBVHs and even more complicated volume
holograms. We believe that this method will be use-
ful for the optimization of volume holograms for sev-
eral applications including spectroscopy.

We used the method for the analysis of SBVH SDFs
and showed that the method can predict the experi-
mental results with good accuracy. In particular,
we showed that the diffraction of such a SBVH read
by a monochromatic plane wave is a circular pattern
for a large-size hologram and a crescent-shaped pat-
tern for smaller (practical) holograms. The depen-
dence of the position of this crescent on the reading
wavelength in both the diffracted beam and the
transmitted beam allows for use of these holograms
for spectroscopy.

Appendix A

When a medium with a small perturbation in permit-
tivity [Ag(r’)] is illuminated by an incident beam E,,
the diffracted electric field E; at position r is found by
use of the Born approximation?3:

1
Ed(r) = V' XV’

4

exp(jk|r — r'|)
L
\4

(A1)

0

o [As(r’) Ep(r’)]dv’ ’

where the integration is over the volume V, g, is the
average (unperturbed) permittivity of the medium,
andr’' = (x',y’, 2’) is a position vector in the volume
V. In holographic recording, the perturbation in
permittivity is caused by the interference between
the reference plane wave (E,) and the signal beam
(E,) during the recording. The polarizations of these
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fields are considered to be the same for practical
cases. In general, the two beams are obtained from
a single linearly polarized beam with a beam splitter.
Therefore we consider the scalar values of the field
(E, and E,) in our analysis. The perturbation in
permittivity in the interference region is

Ae(r') = E (x')E*(x') + c.c., (A2)

where €, is a proportional constant, the asterisk (*)
shows the complex conjugate operation, and c.c.
means the complex conjugate of the preceding term.
In the following we consider the first term in Eq. (A2)
only because the contribution from the complex con-
jugate can be found similarly. Suppose that we rep-
resent the signal beam (E,) in a plane parallel to the
x'y" plane using its Fourier components as

E(r') = jj
Fsky

+ k,y')]dk.dk, ,

Alky, ky, 2")expl j(kx’

(A3)

where the integration is over all values of &, and &,
Note that we consider all the factors (such as 1/4w2 in
the inverse Fourier integral) in each component A(%,,
k,,z').

yWe substitute Ae(r’) from Eq. (A2) into Eq. (Al)
using the expansion in Eq. (A3). Since the curl op-
erators (V' X) and the integration in Eq. (A1) are func-
tions of r’ only, and the integration in Eq. (A3) is a
function of £, and %, only, we can change the order of
integration over k, and &, with the curl operation and
integration in Eq. (A1) to obtain

po [ [[ 5emibie = x)
d 4meg v — 1|
keky (VY

X [A* (k. ky, 2")exp| —j(k.x" + kyy')]

V' XV’

X E,(r’)Ep(r’)]dv’]dkxdky , (A4)

where V indicates the whole volume where the holo-
gramisrecorded. Ifthe readingbeam (E,)is a plane
wave, the integral over the volume (V) in Eq. (A4) is
the diffraction from a simple grating formed by the
reference plane wave (E,) and the plane-wave com-
ponent from Fourier representation of the signal
beam. This diffraction of a plane wave from a sim-
ple grating by use of the Born approximation is
treated in detail in the literature (for example, see
Ref. 7). After we calculate the diffracted plane-wave
component E(k,, &, z') from integration over the ho-
lographic volume in Eq. (A4), the total diffracted field
is found from

E,r) = JJ E(k,, k,, z')dk,dk, . (A5)
koky

To extend this approach for reading with an arbi-
trary beam, we can expand the reading beam into its



plane-wave components. We find the diffracted
beam from each component using Eq. (A5). Then we
can find the total diffracted beam by combining all
the diffracted components.
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