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Abstract. A novel technique is presented for reconstructing 
accurate NMR images from projections under inhomogeneous 
main magnetic field. The mathematical basis and the point- 
spread functions of such a curvilinear reconstruction for two- 
and three-dimensional imagings are fully described. The proper 
use and the effectiveness of this technique are demonstrated by 
computer simulations. The promising results presented here 
could strongly influence practices in the design, manufacture 
and use of the main magnet for NMR imaging by the projections 
method. 

1. Introduction 
One way of obtaining a nuclear magnetic resonance (NMR) 
image is reconstructing the image from projections. When a 
uniform magnetic field is superimposed by a linear field gradient, 
the NMR spectrum represents a rectilinear projection of the 
object, namely the plane integral of the nuclear spins in 
resonance, perpendicular to the gradient direction. A three- 
dimensional (3D) image of the object within the active volume of 
the radiofrequency coil can be reconstructed from a set of such 
projections evenly oriented in the 3D space (Lai and Lauterbur 
1980. Lai 198 1). If the object is selectively excited, or selectively 
detected, over a thin slice, the projection becomes line integrals 
of the slice. The image of the slice can be reconstructed in the 
same way as in 2D parallel-beam x-ray tomography. 

In practice, the magnetic field is not perfectly homogeneous. 
The projection is, in general, curved integrals. Furthermore, the 
curvatures and the widths of the integral paths vary from one 
projection angle to the other. The reconstructed image would be 
blurred if these integrals were treated as rectilinear. A similar 
imaging problem exists in acoustics, geophysics and optics 
where the integral paths are curved and depend on the speed of 
sound, or on the index of refractions, of the objects themselves. 
The problem in these areas remains largely unsolved. 

The field uniformity is mainly determined by the design and 
manufacture of the magnet as well as by the interaction between 
the field and the ferromagnetic materials surrounding the 
magnet. For medical imaging at field strength of about 0.2 T 
(tesla), the magnetic susceptibility of a human body does not 
appear to cause significant perturbation of the field. In the past, 
the effort has been to perfect the magnet and to minimise 
external disturbances. Beyond that, large field gradients are used 
to overcome residual inhomogeneities, so that accurate images 
can be obtained by rectilinear reconstruction algorithms. 
However. technical difficulties as well as construction costs rise 
sharply in perfecting the magnet system. It is also desirable to 
reduce the field gradient strength, since large field gradients 
widen the NMR signal bandwidth; this wider bandwidth not only 
decreases the signal-to-noise ratio but also introduces more 
phase and amplitude errors. 

Once the magnet is installed and adjusted, the magnetic field 

can be measured over the regions of interest. So long as the 
surrounding materials are undisturbed and the magnet is rigidly 
constructed, the same field map can be used for a long period of 
time. Based on the field distribution, the integral paths can be 
calculated for any projection angle. A set of such curved 
projections might provide adequate information for calculating 
the image by an iterative reconstruction algorithm. However, the 
iterative algorithm requires extensive data processing, and its 
reconstruction speed is at least an order of magnitude slower 
than that for the filtered back-projection algorithm. Further- 
more, its accuracy depends on the number of iterations and the 
nature of the image to be reconstructed. 

Although it is known that imaging information can be 
recovered for the sensitive-point imaging method (Hinshaw 
1976) and the selective-excitation imaging method (Hutchison et 
a1 1978) under magnetic fields with large non-uniformities, the 
information obtained by the projections method has been 
believed to be irretrievably lost once the non-uniformity exceeds 
a narrow limit (Hutchison et a1 1978). Here, for the first time 
and contrary to that belief, a curvilinear filtered back-projection 
technique is proposed and demonstrated for reconstructing NMR 
images under non-uniform fields. In this paper the gradient coils 
are assumed to generate linear field gradients. The point-spread 
functions of this reconstruction technique are explicitly derived 
and discussed for 2D and 3D imagings. Computer simulations 
are then used to perform 2D imaging experiments. Throughout 
this paper the images are referred to the spatial distribution of 
nuclear densities, the parameters to be measured are obviously 
irrelevant to the reconstruction technique; this technique is 
equally applicable to imagings on NMR relaxation times. 

2. Mathematical analysis 
The projection paths in NMR imaging depend on the magnetic 
field strength in local regions. In the first step, the nature of the 
projection as well as its dependence on the local field and the 
local nuclear density will be explored. Once a strict relation 
between the magnetic field and the nuclear density is established, 
the point-spread function (PSF) of reconstructing NMR images in 
a uniform magnetic field will be derived and examined. Based on 
the behaviour of the PSF, we then look for a curvilinear 
reconstruction algorithm which maintains a narrow PSF under 
inhomogeneous magnetic field. The analysis will begin with the 
3D volume reconstruction, followed by 2D slice imaging. 

2.1. The projection of an NMR image 
Let us separate the main magnetic field into 

B(r)  =Bo + bo(r) (1) 

where Bo is the dominating space-independent field and bo(r) is 
the space-dependent inhomogeneity. For imaging, linear field 
gradients are superimposed upon the main field B(r).  In 
directing the gradient toward the orientation (e, p) in spherical 
coordinates, the currents in x, y and z gradient coils are properly 
controlled to produce a resultant field (Lai and Lauterbur 1980) 

bg(r ,  U )  = G(x sin 0 cos CO + y  sin 0 sin fp + z cos e)  
= G r  U (2) 

where U is a unit vector pointed to (e, fp) and G is the strength of 
the gradient. The total space-dependent field has 

b(r, U )  = bo(r) + bg(r.  U ) .  (3) 

The magnitude of b(r, U )  is so much smaller than Bo that we are 
only concerned with the component of b(r, U )  in the direction of 
Bo (Lai and Lauterbur 1980). 

The NMR signal represents the evolution of the nuclear spins, 
each of which precesses at an angular frequency proportional 
to its local field strength, observed grossly following a 
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radiofrequency pulse excitation. In the presence of a field 
gradient, we may write the NMR signal detected at  the frequency 
W O  =?BO as 

n 

Vss(t)=exp(-iwot) F(r) exp[iy(B + b8)t] d r  J 
where y is the gyromagnetic ratio and F(r)  is the density of the 
nuclear spins. The time domain signal V&(t) is real when it is 
single-phase detected, or complex if dual-phase detection is 
employed. Using equations (1) and (3), the equation above 
becomes 

n 

V@(t)= I F(r) exp[iyb(r, u)t] dr.  (4) 
U 

On the other hand, as stated at  the beginning of this paper. 
the projection of the density function is the spectrum of the 
signal V8q(t), 

Ps,(w)= Ve,(t) exp( - iwt) dt. 

When the phase-detected frequency w is expressed in terms of 
the magnetic field p, w = yp, it becomes 

Putting equation (4) into equation ( 5 ) .  we obtain 

( 6 )  

where 6(b) is the Dirac delta function. This equation indicates 
that the projection P8,(pj is a surface integral of the density 
function along the magnetic field contour b(r, U) = /3. 

2.2. Rectilinear reconstruction and its PSF in 3 0  imaging 
Under a uniform main magnetic field and linear field gradients. 

b =be = G r  - U. the projection becomes 

Psp(P)=(l/Gy) J F(r)G(r * u-P/G) d r  

=(1/GylPs,(s) 

where s = P / G  and PO&) is an integral of F(r)  over the plane 
normal to U and at  a distance s from the origin of r. Supposefis 
the 3D Fourier transform of the density function F. Along a 
radial line in the Fourier domain, the function f ( p ,  8, p) is a I D  
Fourier transform pair of the projection p&) (Lai 198 1). We 
have 

f(p, 8, d =P&) exp(i2vs) ds 

= Y J:m P d P )  exp(i2wD/G) dP 

f ( p ,  8, p)= f F(r) e x p [ W b ( r ,  u)/Gl dr. 

~ ~ ( ~ 9 =  J m, 8,q) exp[ - i27i(P a r01 dp. 

(7) 

where m is the maximum magnitude of the space-dependent field 
within the imaging volume. Combine equations (6) and (7), 

(8) 
U 

In the rectilinear filtered back projection, the density 
function is reconstructed by an inverse 3 D  Fourier transform on 
f ( L a i  1981), 

(9) 

Execution of this integral in spherical coordinates yields 

Fdr’)  = JO2’ dv 
-n 

sin 8 d0 J’o” p2f(p,  8, a) 

x exp[-i2np(r’s U)] dp (IO)  

where M is the cutoff frequency of the projections in the Fourier 
transform domain. Notice that 

P=Pu (1 1) 
as p is held at the gradient direction (8, y )  in the partial integral 
with respect to p .  The scalar product r‘ - U represents the 
projection of the vector r’ along the gradient direction. 
According to equation (lo), the 3 D  image F(r’) is reconstructed 
by back projecting the I D  Fourier transform of p’f for every 
gradient orientation. 

To find the PSF, substitute equation (8) into equation (9) 

F3(r’)= f 1. F(r) exp[i2n(pb/G-p r’)  dp d r  
d d  

where 

K?(r’, r ) =  [ exp[i27;(pb/G-p - r‘)]  dp. (13) 
d 

In equation (12) the convolution of the kernel K 3  with the 
density function F(r) in the object coordinates results in the 
density function F3(r’) in the image coordinates. Obviously, the 
real part of K3 is the PSF of the image under reconstruction. 
Applying equations (2), (3) and (1 1). the 3D PSF becomes 

K3(r’ ,r)= exp[i2n(pr. u+pbo /G-p .  r’)] dp J 
= f exp[i2n(r - p - p  r ‘ +  pbo/G)] dp 

d 

Let 

R = r - r ’  (14) 

we have 

K3(r‘, r ) =  [ exp[i2npbo(r)/G] exp[i2np e R ]  dp. (15) 

Equation (15) shows that K3 is a 3D Fourier transform of the 
function exp(i2npbo/G). Since the function depends only on the 
radial coordinate p. the 3 D  Fourier transform can be simplified 
to (Champeney 1972) 

d 

sin(2npR) 
2npR 

K3(r’? r ) =  exp(i2npbolG) 4np2dp. (16) 

When the main magnetic field is uniform, bo(r)=O, the PSF 

reduces to 

3 sin(2npR) 
Re K3(r’, r )  = 4np2 dp 

4nM 2npR 

3 sin(2nMR) 
- - cos(2nMR)) (17) -=( 2nMR 

where a normalisation factor of 3/4nM3 is used. This 3D PSF has 
spherical symmetry since it depends only on R.  I t  is plotted 
against the radial distance R in curve A of figure 1, where R is in 
the units of 1/M. It should be noted that following a discrete 
Fourier transform in equation (10) the interval between adjacent 
data points is 1/M. Assuming this interval is equal to that 
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Figure 1. A. The near-region PSF of 3D reconstruction versus 
the radial distance in a uniform main magnetic field. B-E, the 
PSF of 3D curvilinear reconstruction under inhomogeneous main 
magnetic field at  the differential inhomogeneity of Ab/G = 0.2R. 
0.4R, 0.6R and 0.8R respectively. The vertical scales are 
identical, but only the top one is labelled. 

between adjacent picture elements (pixels). as it usually is. we 
can regard the coordinate in figure 1 as being in pixel units. 

When the field is inhomogeneous, bo(r)#O, the 3D PSF is 
space dependent, 

R e  K3(r‘,  r ) = -  - JoM cos[2npbo(r)/G] sin(2npR)p dp 
4nM3 R 

3 ( sin 2nM(R + bo/G) - - 
8n2M2R(R + bo/G) 2 ~ k l ( R  + bo/G) 

3 
8n2M2R(R - bo/G) 

-cos 2nM(R + bo/G)) + 

sin 2nM(R - bo/G) 
( 2nM(R - bo/G) 

1 - COS 2nM(R - bo/G) 

As in the case of uniform field, the PSF in the far region, 
R >> bo/G, is negligibly small compared to that in the near region. 
In the near region, the local field can be approximated by a 
constant since the magnetic field normally does not vary 
appreciably over a small region. The PSF‘S at local 
inhomogeneities of bo/G=2. 4: 6 ,  8 and 10 in units of 1/M, i.e. 
pixel units, are plotted in figure 2. The peak no longer occurs at 
R = O  but is displaced toward R L= bo/G. The amplitude of the 

4” 

I ,  i l l l l l  
0 2 L 6 8 10 

R I1 IMI  

Figure 2. Plots of the PSF in 3D rectilinear reconstruction at  the 
local inhomogeneities bo/G of A, 2; B, 4;  C, 6: D, 8 and E, 10 
units. Like the previous one and the following two figures, the 
vertical scales are unified and labelled in A. 

peak also decreases considerably as bo increases. However. this 
PSF is a 3D function, and the peak describes a spherical shell in 
the 3D representation. The total PSF per unit thickness of this 
shell actually increases slightly as bo increases. Since the radius 
of the shell enlarges as the inhomogeneity increases, the 
reconstructed image would be blurred. T o  improve the image 
resolution, the only deblurring technique available so far is the 
application of strong field gradients, which reduce the magnitude 
of bo/G in equation (18). 

2.3. Curvilinear reconstruction and its PSF in 3 0  imaging 
The inhomogeneity bo(r) in equation (1 8) represents the 
deviation of the local field from a reference known as the 
projection centre for the reconstruction. If bo were replaced by a 
differential inhomogeneity, Ab. measured with respect to the 
local point to be reconstructed, namely bo(r)- bo@’), the width 
of the PSF would be greatly narrowed since the differential 
inhomogeneity is small within the near region and vanishes at  
R = 0. An additional term, exp[ - i2npbo(r’)/G], would be 
needed in the integral of equation (15), which derived from 
equation (9). Thus, in order to obtain sharp images. we modify 
the reconstruction (9) to 

F J ~ ( ~ ’ ) =  exp[ -i2npbo(r’)/G] f (p ,  8, IP) exp[ -i2n(p a r’)]  dp 

= [’ d o  1‘ sin 8 dB lv p2 f 
Y 0 

x exp( -i2np[r’ e U + bo(r’)/G]} dp. (19) 
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Since the equation r’ e u=const  is a plane in the 3D image 
space, r’ a U + bo(r’)/G= const represents a curved surface 
deviating from the plane by bo(r’)/G. Equation (19) is, in fact, a 
curvilinear filtered back projection of the 1D Fourier transform 
result onto a family of surfaces. 

Following the derivation in the section above, the 
inhomogeneity-corrected 3D kernel becomes 

n 

K3c(r’5 r ) =  1 exp{i2np[bo(r)- bo(r’)]/G} exp(i2np - R) dp. 
d 

Denote 

Ab(r‘, r )  = b&) - bo(r’). (20) 

The corrected 3D PSF has 

3 
Re K34r’, r )=  

8n2M2R(R + Ab/G) 
i sin 2nM(R + Ab/G) 

2nM(R + i\b/G) 

3 
-COS 2nM(R + Ab/G) + 1 87iZMZR(R - Ab/G) 

- COS 2nM(R - Ab/G) 
sin 2nM(R - Ab/G) 

2nM(R - Ab/G) 

Comparison of equations (21) and (17) indicates that the 
corrected PSF at R is about the average of the uniform field PSF 
at R - Ab/G and R + Ab/G. Within a small local region, the 
differential inhomogeneity is small and linear in the first order 
approximation, 

Ab/G a R  with O<a< 1. 

The parameter a represents the gradient of the field 
inhomogeneity. For instance, at  a = 0.4 it is equivalent to 40% 
of the gradient strength generated by the gradient coils. The 
corrected 3D PSF’S of a = 0 . 2 ,  0.4, 0.6 and 0.8 are delineated in 
curves B-E of figure 1. 

I t  is the gradient of the inhomogeneity, rather than the 
inhomogeneity itself, which determines the shape of this PSF. All 
the PSF’S shown in curves B-E peak at  the centre and are. in 
general, well behaved. The PSF a t  a = 0 . 2  even appears better 
than the uniform field case in curve A. As R increases toward 
the far region, the PSF’S converge to zero rapidly, regardless of 
the magnitude of a. This technique should allow us to 
reconstruct 3 D  images of high fidelity. 

2.4.  Reconstruction technique and  PSF in 2D imaging 
Two-dimensional tomography reconstruction is a special case of 
the 3D volume reconstruction described above, with the polar 
coordinate B fixed at  n/2. The gradient unit vector U, the object 
coordinate r and the image coordinate r’ are all limited to the xy 
plane. The density function in the object space, F(r), in the 
image space, F(r’), and in the Fourier domain, f ( p ,  q), are 2D 
functions. From equation (9), the rectilinear reconstruction for 
2 D  imaging 

~ z ( r ’ ) =  J’ f ( p ,  q) exp[ -i2n(p - r’)] dp 

= [’“ dq  J M  pf(p, q) exp[ -i2x(r’ - U) dp (22) 
Y O  

has 2D kernel 

KZ(r’, r )=  exp[i2npb0(r)/G] exp(i2np R) dp s 
s 

and the 2D PSF 

Re Kz(r’, r )=  cos[2npbo(r)/G] exp(i2np R) dp. 

This integral, a 2D Fourier transform of a function which 
depends only on the modulus of p, can be reduced to I D  
integration of a Bessel function (Champeney 1972), 

ReKz(r’, r ) = 2 n  p cos[2npbo(r)/G]Jo(2npR) dp. (23) 

Based on properties of Bessel functions. the integral can be 
carried out for bo = 0. After normalisation we have 

Re Kz(r’, r )  = ( l / nMR)J ,  (2nMR). 

This 2D PSF in uniform magnetic field is shown in curve A of 
figure 3. 

ibM 
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Figure 3. A, The PSF of 2D reconstruction in a uniform 
magnetic field. B-E, The PSF of 2D curvilinear reconstruction at  
differential inhomogeneity of Ab/G= 0.2R, 0.4R, 0.6R and 
0.8R respectively. 

For bo # 0, the integral in equation (23) cannot be expressed 
in a closed form. Numerical methods are used to plot the PSF for 
bo/G = 2, 4, 6, 8 and 10 units in figure 4. In 2D representation, 
the peak of the PSF describes a circular ring. The outward spread 
of the PSF will rapidly blur the image as the inhomogeneity 
increases. 

Like equation (1 9), the inhomogeneity-corrected 2D 
reconstruction can be written as 

Fzc(r’)= JOz* do  JoM pfexp{i2np[r’ e U + bo(r’)/G]} dp. (24) 

Here it is a curvilinear back projection of the Fourier transform 
onto a family of curves. Using the differential inhomogeneity in 
equation (20) and following the derivation for equation (23), we 
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Figure 4. The near-region PSF in 2D rectilinear reconstruction 
at the local inhomogeneity bo(G of 2,4,6,8 and 10 units, 
respectively, for A-E. 

Figure 5. Result of 2D imaging simulation on a five-disc 
phantom placed in a uniform main magnetic field. Image 
intensities are displayed by the amplitudes in 128 curves, each 
associated with 128 data points, representing the 128 x 128 
pixels. 

obtain the normalised PSF 

2 
Re K&‘, r ) = x  JM p cos(2npAb/G)J0(2npR) dp. (25) 

In the local region, the inhomogeneity-corrected 2D PSF’S for 
Ab/G=0.2R, OAR, 0.6R and 0.8R are plotted in curves B-E of 
figure 3. These narrow PSF’S keep the 2D images from blurring. 

3. Experiments by computer simulations 
An object consisting of five circular discs is constructed on a 
128 x 128 matrix. The discs have uniform and identical 
densities. The largest, with a radius of 14 pixels, is located at the 
centre. The others, with radii of 10, 9, 8 and 7 pixels, are each 
near one of the four corners of the matrix. Based on a field 
distribution, 180 projections of the object are computed 
according to equation (6). Each projection is digitised into 128 
data points. The projections are then filtered and back projected 
onto the image space of 128 x 128 pixels. In the first experiment, 
the field is homogeneous. The reconstructed image is shown in 
figure 5, with the intensity displayed as a 2D function against 
the pixel coordinates. The reconstruction noises, intensified by 
the sharp edges of the object, are visible. 

An inhomogeneous field of 

bo(x’, y’)/G = lO[(x’ - 60)2 + (y‘ - 60)*]/4096 

is arbitrarily selected for the next experiment. The inhomo- 
geneity is expressed in pixel units, with one pixel unit equivalent 
to the field difference resulting from the applied field gradient 
over one-pixel distance. In this scale, bo(x’, y’)/G represents the 

number of pixels by which the point a t  (x’, y’) has departed from 
the straight projection path in the uniform field, into the curved 
path on which it now lies. This field distribution in x’y’ plane is 
depicted in figure 6. At the corners the inhomogeneity reaches 
about 10 pixel units. The field is a t  least an order of magnitude 
less uniform than in the first experiment, where inhomogeneities 
of less than one pixel unit are assumed. The image reconstructed 
by the conventional, rectilinear, filtered back projection is much 
blurred and distorted, as is shown in figure 7. But the curvilinear 
reconstruction technique, described in equations (24) and (30), 
produces a sharp and accurate picture as displayed in figure 8. 

Figure 6. The field distribution of the quadratic inhomogeneity 
bo(x’, y‘) plotted against the pixel coordinates in pixel units. The 
minimum field in this x’y’ plane occurs at the pixel (60,60). 

Also, reconstruction noises are reduced. This may result from 
the variations in width and orientation of the curvilinear paths, 
which make the back projection pattern less symmetrical and, 
therefore, make reconstruction noise accumulations at a given 
pixel less coherent. 

The orientations of these 180 projections are one degree 
apart, but the gradient directions are reversed for every other 
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Figure 7. Image of the phantom in the inhomogeneous field by 
the conventional rectilinear reconstruction. 

Figure 8. Image reconstructed by the new curvilinear technique 
of the phantom in the inhomogeneous field. Like figures 5 and 7, 
it is reconstructed from 180 projections with the projection 
orientations extended over 360’. 

projection, so that the projections actually extend over 360’. In 
the case of a homogeneous field, it makes no difference whether 
the projection angles cover 180’ or 360’. Contrariwise, the 
range of the projection angles does affect the accuracy of an 
image taken from inhomogeneous fields. For comparison with 
figure 8, a curvilinear reconstruction of the object from 
projections oriented within 180’ range is given in figure 9. The 
picture seems to retain its sharpness, but sizable artefacts arise. 
Intensity variations among the five discs are also evident. 

4. Other considerations 
Comparison of equations (4) and (8) shows that 

S(P, P)= V J P / Y G )  

in 2D notation. Equation (24) could be written as 

F2dr‘)=(yG)’ r drp LM’$ tvdt) 

x exp{ - i2nyGt[(r’ U) + bo(r’)/G]} dt. (26) 

Indeed, the availability of time-domain NMR signals allows 
simpler computation for the reconstruction. The back projection 
could be performed directly from the Fourier transform of the 
NMR signal multiplied by t in 2D imaging, or t2  in 3D imaging 
(Lai 1981). 
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Figure 9. Curvilinear reconstruction of the image with the same 
number of projections but confining the orientations within 180’ 
range. 

Usually the NMR signal V(t) exists only for t > O ,  F(r’) is in 
general a complex function unless special echo techniques are 
used to generate a symmetrical V( t )  function. The real part of 
F(r’) is the image reconstructed from the absorption-mode NMR 
signal, while the imaginary part of F(r’) comes from the 
dispersion mode. Since the dispersion-mode spectrum does not 
represent a true projection, the imaginary part of F(r’) does not 
resemble the object F(r). It is normally discarded. 

In the special case of uniform magnetic fields, as the gradient 
reverses its direction we have 

b(r, -U) = b&, -U) = -Hr, U). (27) 

Since fir)  is real and U(U, + n)= -u(cp) in 2D coordinates, 
equations (4) and (27) lead to 

Vq+n(t)= m t ) .  

Consequently, for bo = O  we can partition the rp integration of 
equation (26) into two halves and recombine them, 

Re F2(r’)=(yG)2 Re J; d p  LM’* t {  Vo exp[ - i2nyGt(r’ - U)] 
+ V,* exp[i2nyGr(r‘ - U)]} dt 

= ~ ( Y G ) ~  Re [‘ d p  LM’@ tVP 

x exp[ - i2nyGt(r’ - U)] dt. 
J O  

(28) 

It is sufficient to steer the gradient vector over an angle of n for 
reconstructing Fz(r‘). 

However, when the field is inhomogeneous it is obvious that 

V.+.(t)+ W t ) .  

The integrand in equation (26) at one gradient direction is in 
general not a complex conjugate of the opposite one. It requires 
full range of 2n in 9 to reconstruct F2@), or 4n solid angle in 
(0, 9) for reconstructing the 3D image F&). 

Another way of looking at this matter is to consider the local 
field as uniform but with an intrinsic and stationary field 
gradient Vbo. As the external field gradient is steered from cp = 0 
to a, the total gradient Vb does not rotate exactly n radian, as 
illustrated in figure IO. Some of the projection views in the local 
region will be either redundant or missing. The reconstruction is 
not quite accurate, as shown in figure 9. 
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V b  Vh- 

0 

Figure 10. The role of nonvanishing intrinsic gradient Vbo at a 
local point. Although the applied field gradient G rotates 
through 180”, the resultant field gradient V b  does not cover 180‘ 
nor does it have a constant strength. 

It should be noted that 
n m  

f ( p ,  p)=y 1 P,(P) exp[i2WvG) dP 
-8 - m  

is ranged from p = - M  to +?M. If the image were actually 
calculated from f ( p ,  o), which is obtained from P, in the 
equation above. we should write 

x expi - i277ppCr’ 0 U + bo (r’YGI} dp. 

Again. when the field is uniform 

f b V +  4=f(--P, PI. (29) 

Using the fact that the Fourier transforms of both Ipl and f are 
real. it can be shown that 

- n  “U 

. 0 v ’ - M  
Fz(r ’ )=  I d@ 1 Ip f ( p ,  v )  exp[ -i2np(r’ . U)] dp. 

However, under inhomogeneous field equation (29) is not valid 
and the full range of o must be used for the integral. 

In numerical calculation, integrals are replaced by 
summations. Consequently, each data point of a projection is a 
summation of F(r) along a curved strip of finite but variable 
width. If the reconstruction were executed by back projecting 
the Fourier-transformed result one point at a time onto this strip, 
the calculation would be tedious since we would have to find all 
pixels lying within this strip. These pixels are defined by 

where L ,  in the unit l /M, is the centre of strip L.  From the 
practical point of view. it is better to perform the reconstruction 
by sequentially scanning through the pixels and to find the strip 
which runs through them from the equation 

L = r‘ e U + bo(r’)/G. (30) 

The Fourier-transformed datum at L is then added to the pixel 
at  r’, as indicated in equation (19) or (24). Since the pixel has 
finite size. it may not fall completely into one path. The value to 
be added to r‘ is normally interpolated between two adjacent 
data points. 

At the expense of computation time, it may be possible to 
calculate NMR images by an iterative reconstruction algorithm. 
The iterative technique requires back projections as well as 
forward projections. The pixel scanning procedure described is 
applicable to both operations, except that in forward projection 
the pixel value is added to the L th  data point instead. 

The magnetic field is not necessarily operated at  on- 
resonance condition, especially in the single-phase detection 
system where the field is often offset by a considerable amount. 
The field offset is embedded in bo(r) as a constant. Equation (30) 
indicates that every Fourier-transformed result must be shifted 
by this offset constant, i.e.. there must be a proper centring of 

the projection profile (Lai and Lauterbur 1981), before back 
projecting it to the pixels. The PSF is not affected by the field 
offset. since the offset is cancelled by both terms in equation 
(20). However, if the shift were inaccurate. Ab f O  even at R =0, 
the image would be blurred. 

5. Conclusions 
Image blurring due to an inhomogeneous magnetic field can be 
avoided by a curvilinear back projection technique. Computer 
simulations clearly show that the main magnetic field for 
projection-reconstruction of NMR images need not possess the 
high degree of homogeneity that has been supposed. However, 
the field gradient G must be steered through a full angular range 
of 277 in 2D imaging, and 4n solid angle in 3D imaging. 

Commercially available magnets, aided by shim coils, are 
currently specified at about 15 PPM inhomogeneity over a 
working volume of approximately 400 mm diameter for medical 
imagings. The inhomogeneity in the experiment described above 
is already an order of magnitude larger. The actual limit of 
inhomogeneity that this technique can successfully deal with 
remains to be investigated. Undoubtedly, it should be able to 
correct for the inherent inhomogeneities of commercial magnets 
as well as for the field distortion caused by surrounding 
materials. This technique‘s allowance for non-uniformities in the 
magnetic field should also make it easier to achieve high- 
resolution imaging than is possible in rectilinear reconstructions. 
In addition. since the projection paths need not be straight, the 
field gradient strength can be reduced. Consequently. not only 
the NMR signal quality is enhanced, but also the construction for 
linear gradient coils can be eased. 

The PSF is a function of the differential inhomogeneity Ab 
and the radial distance R measured with respect to the point of 
interest. As long as the gradient of the inhomogeneity Vbo is 
small compared to the strength of the applied gradient G. the 
PSF remains narrow and well behaved everywhere. Therefore. 
when the field varies gradually and continuously over the 
regions. the field difference between two distant points can be 
substantial and still yield high-fidelity images. However. 
inhomogeneities which change rapidly in local areas. having 
large Obo, are less acceptable, although the overall 
inhomogeneity might be smaller. 

The magnetic susceptibility of the object can slightly disturb 
the field, especially when the magnet is operated at  high field or 
when the object is a nonbiological sample of high susceptibility. 
If the field distribution can be measured with the object in place, 
the curvilinear reconstruction technique can still be applied to 
correct for the perturbation introduced by the object itself. It is 
worth noting that a modified NMR imaging technique for rapidly 
measuring magnetic field distribution within the object has been 
proposed and demonstrated (Maudsley et a1 1979). 

In summary, the curvilinear reconstruction technique 
presented here is a promising way of obtaining accurate NMR 
images under inhomogeneous magnetic field. With this 
technique, the uniformity requirement of the magnet, whether 
resistive or superconductive, becomes far less stringent. The 
technique not only can reduce the cost of an NMR imaging 
system. but also make the system more durable and practical for 
clinical use. Furthermore, given the same degree of field 
uniformity, more accurate and higher resolution images can be 
reconstructed by this technique than by the conventional 
rectilinear technique. 
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