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Signal Selection in High-Resolution NMR by Pulsed Field Gradients

I. Geometrical Analysis
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A geometrical description for the selection of coherence transfer
pathways in high resolution NMR by the application of pulsed
field gradients along three orthogonal directions in space is pre-
sented. The response of the spin system is one point of the three-
dimensional Fourier transform of the sample volume affected by a
sequence of field gradients. The property that a pathway is re-
tained (or suppressed) when a sequence of field gradients is ap-
plied is expressed by the property of vectors, representing the
pathway and the sequence, respectively, to be orthogonal (or not
orthogonal). Ignoring imperfections of RF pulses, and with the
exception of sensitivity enhanced experiments and experiments
where the relevant coherence order is zero while field gradients
are applied, it is shown that at most only half of the relevant
pathways, as compared to a phase cycled experiment, are
retained when field gradients are used for signal selection.
© 1999 Academic Press

INTRODUCTION

high quality @0, 11). The technique can be disadvantageous il
comparison to phase cycling with respect to signal-to-noise
For some important RF sequences which are also basic buil
ing blocks of multidimensional experiments, such as homa
and heteronuclear correlation, and multiple quantum filters
signal selection by pulsed field gradients implies the loss c
half of the pathways which encode for the relevant informatiol
of the experiment, whereas the maximal number is retained t
phase cycling 12). It has been argued that such a loss is
common to most experiments when pulsed field gradients a
applied.

Recently, a geometric approach for the calculation of suit
able sequences of pulsed field gradients for signal selection
any NMR experiment was presenteti3). The method was
derived for a case where field gradients are applied along
single direction in space, the direction of the Zeeman field.

In the present paper, the earlier work is extended to cog
with the general situation where field gradients are applie
along any direction in space. Such gradients can be generat

The perturbation of a nuclear spin system by RF pulsggih three mutually orthogonal coils. The action of an arbitrary

allows the excitation of coherent superpositions of eigenstatggmbpination of pulsed field gradients along any direction ir
and their transformation into each other. A particular series gh,ce on a coherence transfer pathway is described by a g
such coherence transfers forms a coherence transfer pathyay;ic approach. The geometry is used to specify those expe
(1). As RF pulses cause several coherence transfers to 0Ggiints where signal selection by pulsed field gradients i
simultanously, a manifold of pathways are excited during thgnerently accompanied by a loss of signal-to-noise in com
course of an experiment. Multidimensional NMR SPectrosCopyarison to phase cycling. The treatment focuses on basic
can be used to map coherence transfer pathways, and theigius of signal selection by field gradients and is made for th
provides detailed information about the structure and dynamiggse of idealized experiments. The influences of instrument

of molecular system in the liquid phase. However, the specifperfections, relaxation, and exchange are not considered.
would be hopelessly complicated if all the excited pathways

were allowed to contribute, and the selection of particular
coherence transfer pathways is a first-rank element of each
NMR experiment.

The selection can either be performed by a phase cycling
procedure 2—4), where different experiments recorded with A pulsed field gradient exposes a spin system for a we
different settings of the phases of the RF pulses are combinddfined period to a spatially inhomogeneous magnetic fiel
or by the application of pulsed field gradients-{). The use of AB(r, 7) = (0, 0, G,f(7)x + G,f(1)y + G.f,(7)z) which
field gradients is often preferred over phase cycling, since tigealigned along the homogeneous Zeeman field. It is assum
experiments are less susceptible to artifacts tthnoise @), that a spatially constant field gradient can be generated alol
inherent water suppressiof))), and spectra are, in general, okach of three mutually orthogonal directions, the y-, and
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z-axes, respectively. The amplitucg,, for A = X, y, or z, of In the general case of an experiment which has a tot&l of

a field gradient may have the shape of a smooth fundtipr), periods of free precession, a number of pulsed field gradien

where—1 = f,(7) = 1 for 0= 7 = 7,, andr,, is the overall of different amplitudes, time profiles, and durations may be

duration of the pulse. used. Those pulses which are along the same axis can
The coupling of a heteronuclear spin system of two speciespresented by a vector &f real components,

with gyromagnetic ratioy, andys, and Cartesian spin opera-

torsl; = (I, 1y, i) and Sy = (S Siys Sko), respectively, g4
with the magnetic field\B(r, 7) is described by the Hamilto- g5
nian R .
g = ,
He = _E 'YI{fox(T) X + Gyfy(T) yi + szz(T) Zi}liz .A
i gF

- 2 'YS{GX fx(T) X+ Gy fy( T) Yk + Gz fz( T) ZK}S(Z'

- with A = x, y, z. g/ is the strength of a pulse applied in the

ith period along the specified axig. = 0 if no field gradient

The loss of signal intensity by lateral diffusion in an inhomo'—S applied. Analogously, a coherence transfer pathway is rej

geneous magnetic field4), as well as the chemical shieldingresented by a vectqy of F real components,
(~107°), is neglected. The;, y,, z, are the coordinates of the

nuclei. Since the applied field gradients are much too weak to P
resolve the different nuclear sites within a molecu®e= 100 P2
gauss cm'), the same coordinates, y, andz, respectively, p:i= ,

can be used for each site:

HG = _{fox(T)x + Gyfy(T)y + szz(T) Z}{yllz + VSSZ}- Pr
wherep; is the composite coherence order prevailing inithe
period of free precession.

For a particular pathwap, the phase shifts induced by the
ffferent field gradients accumulate during the course of th
experiment. The overall phase shift can be expressed conv
niently by extending the vector notation introduced above. Th
vectorsg”, p are considered as elements of the Euclidean spat

70 IR, equipped with an inner produck|y) := X'y = 37 Xy,
{yp' + Vsps}{Xij f(m)dr between any two vectors andy. The transposed form of a

0 vectorx is x', andx'y expresses the inner product as the matri
product of the row vectox' and the column vectoy. The

" yGyj f(r)dr + ZGZJ f(rdry. [1] phase shift at the end of the experiment can be calculated ¢
0 0

I,=2 l,andS, = X, S,, are thez-components of the total
spin angular momenta of each species.

H induces a precession of the spin system. A heteronucl
coherence, addressed by coherence orgérand p° with
respect to each species, experiences a phase shift of

F F F
In terms of quantitiegy”, for A = x, y, z, called “strength” 7'{(2 Pigi) X + (2 Pgy + (Z Pig?) z}
(13, 15, ' : :

= v{(plg)x + (plg")y + (plg") 2}

Tho ={kx + ky + k,z} = k'r,
g% 1= G, J fa(7)dr, thax + oy + oz} = k't
0

with

and the composite coherence ordes, (16, X K w(plg®
(y) and k:= (ky) = (%(p|9y)) :

z K, y(plg?)

Vs
St
p:=p ” p
The phase shift is proportional to the coordinates, expressed
Eqg. [1] readsy,p{ xg" + yg’ + zg?}. the inner product of the wave vectkrand the position vector
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r. The proportionality constants, the componentskpfare J;(x)/x and sin§)/x are oscillatory functions. However, ex-
determined by the inner product of vectgrsandg” of |R".  pression [3] is an idealization, and its zero crossings are e

An individual pathwayp gives rise to a macroscopic signalperimentally not feasible (inhomogeneous excitation, inhomc
denoted byo(k). o(k) comprises the contributions from allgeneous Zeeman field). An estimate of the attenuation is tt

volume elements of the sample, envelope function of expression [3] for large arguments
ak) 22 1 for KR KL = )
o(k)=ff fp(r)lvlo(r)exp{ik‘r}dv. [2] ok=0) " Jm (kRTAL kR kL =1 [40]

\

The attenuation is stronger for larger componentg,dfe., for
Mo(r)exp{ik'r}dv is the amplitude of the contribution fromlarger projections of the applied gradient sequences onto tf
the volume elemendv = dx dy dzat positionr. p(r) is the pathway (if the same strengths of the individual pulses are use«
spatial spin density. Equation [2] is a three-dimensional Fou-

rier transformation fronr-space tok-space which represents sg| ECTION OF COHERENCE TRANSFER PATHWAYS
the basic relation of Fourier imaging 4, 18.

The excitation profile or, equivalently, according to thehe Selective, Suppressive, and Free Subspaces
principle of reciprocity 19), the detection profile are assumed ] ) . ) |
to be uniform. The sample volume affected by the field gradi- The evolution of a spin system during an NMR experimen
ents may be a cylinder of radiuR and lengthL whose IS described by the set of all coherence transfer pathway

symmetry axis is along the laboratanaxis (common shape of { P - - - °p, °"p, ..., ’p}, which are excited by the RF

NMR tubes). In this case, and for a homogeneous solution B{!ses. Each pathway is represented by a vect¢Rofwhere
molecules,p(r) = 1/(mR°L) = constant within the cylinder F iS the total number of periods of free precession. Let the firs

but vanishes outside, and Eq. [2] yields Q vectors, {p, °p, . .., °p}, be the wanted pathways, those
which code for the relevant information of the experiment. The

remainingd — Q pathways, £'p, *p, ..., ’p}, are the
with k, = \/m unwanted pathways. The purpose of applying pulsed fiel
gradients is to block the unwanted coherence transfer pathwa
[3] from contributing to the detected signal, whereas the wante
pathways should be detected without attenuation. According

J.(x) is the Bessel function of the first kind of first ord@0f.  EAs- 2[43] and [4b], sequences of pulsed field gradieyitsy’,
Any possible combination of pulsed field gradients is repr@dg’, have to be found which are orthogonal to each wante
sented by vectorg’, g’, andg?, and their action on a particularpathway but have possibly strong projections onto the differer

coherence transfer pathwaycan be determined by the eval-Unwanted pathways. _
uation of expression [3]. Because of the linearity of the inner product, each of the
A pathwayp is fully retained, i.e.g(k) = o(k = 0), only if Vvectorsg’, ¢, and g” will be orthogonal not only to each
wanted pathway, but also to any linear combination of thes
vectors. The set of all linear combinations of vectorg,{

o(k)  23,(kR) sin(k.L)
ok=0" kR kL °

k=0 (plg" = (plg”) = (plg") =0, [4al 25 . °p} forms a subspace ofRF, denoted by square
brackets {p, °p, . .., 9p]. Itis called theselectivesubspace, as
i.e., the vectorg, g, andg® must be orthogonal tp. In this the vectorsy’, g’, andg® must not have a component alorig,[
case, the coherence transfer pathway may be cedlgldased, *p, ..., °p].
as the effects of the different pulsed field gradients cancel eachiFor the determination of the projections of the vectsrgy’,
other, and a coherence transfer echo is forn®d ( andg® onto an unwanted pathway, it is sufficient to take into

Otherwise, foik # 0, i.e., if one or several of the vectogS, account the component of the unwanted pathway which i
g’, andg” are not orthogonal tp, the pathway is attenuated toorthogonal to the selective subspace. The orthogonal comp

a certain extent and may be callddphased. nent, denoted by, can be calculated by
The attenution of a pathway can be quantified by Eq. [3]. In
practical applications the argumeritsl. andk,R, have values kg=*p— > (‘ple)e, fork=Q+1,...,J.

of the order 16 and larger. The asymptotic behavior of the
function 2J,(k,R)/(k,R) is very accurately described b2Q)

_ The vectors &} form an orthonormal basis of the selective
2J,(k,R) 2\2sin(kR — m/4) subspace (the basis may be constructed from the gt {
e 2 Q . . .

kR \J@ (k,R)32 p, ..., “p} by the Gram-Schmidt orthogonalization proce-
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dure @1)). The componentyy of the unwanted pathways span A

again a subspace, denoted By'[g, °**q, . .., ’q]. Itis called T T t detection
the suppressivesubspace, since only pathways which have !
components along this subspace can be attenuated.
Field gradients are usually not applied in all periods of free _,
precession (e.g., interference of field gradients with RF decou- 4 \
pling). In principle, the number of periods taken into account, o { \/ \
N, can vary as 1= N = F. For N < F, it is sufficient to -1 \ A |
represent each pathway by a vector withcomponents as -2 \ /

before, but the components, corresponding to periods of free
precession not considered for an application of field gradientsB
are set to zero. Then, the pathways are effectively elements of
|IR". All coherence transfer pathways excited in the experi-
ment, wanted and unwanted ones, are elements of the union of
the selective subspace and the suppressive subspace. Because
of possible linear dependencies, the union can be smaller than
|IR". Let M be the dimension of the union, and = N. The
vector spacéR" can be decomposed into the direct sut)(

IRN=['p, %p, ..., PI®[*q,

%, ... gl @ RN [5]

The subspaclR™ ™ contains all vectors dR" which are not
elements of the other two subspaces. It is called fiee

subspace, since neither any Want?‘deathWay norany unwantegls 1. () Basic pulse sequence for homonuclear double-guantum spet
pathway has components alofig™ ™. It is shown in the troscopy (). The thin and thick bars represenfe- and-pulses, respectively.

Appendix that a free subspace is present whenever a perfe€ily the wanted pathways are indicated on the pathway diagram. (B) |
refocusingfr-pulse is applied in an experiment As an eXamp@rinciple, field gradients can be applied in all four periods of free precessior

ahd pathway vectors are elementgRf. If it is intended to apply gradients in

.\ 3 .
the decomp03|t'0n OfR ! correspondlng to a homonuCIearall periods except the detection period, the fourth component of each pathw:

multiple quantum experiment where gradients are applied Jictor, representing the detection period, can be set to zero. Accordingly, t
three periods of free precession, is illustrated in Fig. 1. pathways are effectively elements |6 and may be represented by vectors
Decomposition §] provides a framework for the descriptionWith three components. There are four wanted pathways;-11,2), (1, —1,

. . ] . . —2).(—1,1,2),and {1, 1,—2), which are shown as bold arrows in the figure.
of signal selection by pulsed field gradients: To rephas%#]ce all wanted pathways lie in a plane, the selective subspace has dime

wanted pathway.s, the sequenags gy.’ andg® must be ele- sionality 2. For a perfectly refocusing-pulse, the unwanted pathways are
ments of the union of the suppressive subspace and the fii#erent form the wanted ones only with respect to the coherence ord
subspace. A particular unwanted pathway can only be sujevailing during the evolution timg (unwanted multiple quantum order); an

pressed if it is not an element of the selective subspace, mple are the dashed filled arrows in the figure~«1, 0), and (1, 1, 0).

ival v if it h | h .Any unwanted pathway lies in the plane spanned by the wanted ones; the!
equivalently, It it has a component along the SUppreSSW(ﬁe, the suppressive subspace is empty, and a one-dimensional free subsy

subspace. Otherwise, the unwanted pathway is invariallysts. Such a decomposition of the overall spaB&)(is typical for experi-
rephased by any sequence of field gradients which rephasesnb@s where refocusing-pulses are applied (see text). Imperfections of the
wanted pathways, and the pathway selection would be incoffiRulse can induce unwanted pathways which lie outside the plane (n

shown). Any gradient sequence along the free subspace, e.g., (0, 1, 1) (of
plete. Therefore, most of the unwanted pathways should haaY%w), can dephase these artifacts while all four wanted pathways a

a component along the suppressive subspace, and, at the S@pagsed. However, the unwanted multiple quantum signals will also b
time, as many wanted pathways as possible should be elemesiisased.

of the selective subspace. The number and distribution of

pathways within the selective and suppressive subspaces de-

pends crucially on the choice of periods of free precessi%n

where gradients are applied (Eg. [5]). The placement of gr omparison to Phase Cycling

dient pulses is a particularly complex problem in multidimen- For the majority of NMR experiments, it is a particular value
sional experiments with many periods of free precession. of the magnitude of the coherence order in each period of fre
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precession which encodes for the relevant information, afat the application of a pulsed field gradiem & 2). *p splits
wanted pathways with opposite sign of that value contribuieto two wanted pathways:
equally to the desired signal. Phase cycling can be used to

collect such complementary pathway®),(and thereby the -1 -1 -1
maximal number of wanted pathways, while often the most 0 +n -n
significant unwanted pathways are suppressed. Optimum sig- ) 0 . 0 . 0
nal-to-noise is obtained in these experiments. When signal P:=| . [~ P-:=| . [, pP-:=| . |. [6a]
selection is performed by pulsed field gradients, the ultimate

goal is to rephase the maximal number of wanted pathways, the 0 0 0

same as in the phase cycled version, but to dephase the un-

wanted ones at the same time. This is not possible for magle selective subspace spanned by the single wanted pathv
experiments. The suppressive subspace is empty wheneverghisy — 1 ['p] is a subspace of the selective subspace fo
intended to rephase the maximal number of wanted pathways._ - ['p., 'p_]. Specifically, the linear combination

and, consequently, no sequence of pulsed field gradients exists
for such a task. To discriminate between wanted and unwanted

pathways, it is neccessary to create a nonempty suppressive _01
subspace. As a consequence, the number of wanted pathways 1, + 1p 0
N _

which can be refocused will be halved. — = [6b]

The class of experiments for which the assertions are true is
specified by induction with respect to the number of pulsed
field gradientsN, which are applied during an experiment. For
an experiment with a total df periods of free precession, the
different pathways are represented by vectors where theNfirsp > L]
components are associated with the periods where gradientsS@@Pination
applied, and the lagt — N components are zero (see Eq. [5]).

pans Ip], as it coincides with the vectofp. The linear

It is no restriction when the ordering of the components of 0

pathway vectors is different from the real succession of gradi- ) . +n

ent pulses in an experiment. The following analysis is based on Pr =P _ 0 [6¢]
the specific structure of the pathway vectors, and some of their 2 :

important properties are derived in the Appendix. To simplify

the notation, only homonuclear experiments are considered. 0

The discussion is first restricted to experiments where the
coherence order of the wanted pathways is different from zegenerates a vector which is linearly independent'f It
in any period of free precession and where no refocusifigllows that the wanted coherence transfer pathways for tt
m-pulses are applied. Thiéh component of each wanted patheaseN = 2 span a selective subspace of a dimension that is
way is +n or —n, with some integen, and the component larger than in the casd = 1. Since the addition of a single
representing the detection period equalk (quadrature detec- period of free precession can only increase the dimension
tion (22)). When field gradients are appliedihperiods of free the overall space by 1|R?), the suppressive and free sub-
precession, the pathway vectors are elementRbf(N non- spaces remain empty. The former arguments can be repea
zero components). The total number of wanted pathwawthenever a further period of free precession is included unt
counts up to 2 when the detection period is excluded from théhe limit, N = F, is reached, and the suppressive and fre
N periods of free precession where field gradients are applisdpspaces are empty, whatever periods of free precession
and it equals 2P when the detection period is included (seeonsidered for a possible application of gradient pulses. Tr
Appendix). same result is obtained in a similiar calculation (not shown) i

Let us assume the experimentalist decides to apply a singlee starts out from a period of free precession different than tt
field gradient pulseN = 1) in the detection period of the detection period for the placement of a first gradient pulse (se
experiment (prior to detection). In our notation, the first conalso the Appendix).
ponent of each pathway vector is some integer (the coherenc&he situation is different for experiments where the new
order prevailing in the detection period), and the remainirigcluded period of free precession is separated from one of tt
F — 1 components are equal to zero. Obviously, there is orfigrmer periods by ar-pulse. For an ideatr-pulse, the com-

one wanted pathway'p' = (-1, 0, ..., 0),which already ponent representing the newly added period, saykhe (1)th
spans|R*, and the suppressive subspace as well as the fraamponent, is the negative of some other component, say tl
subspace are empty (Eq. [5]). Nth. As the suppressive subspace is empty prior to the inclt

Now, a further period of free precession may be anticipataibn of a further period of free precession, each unwante
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pathway can be represented by a linear combination of the A
wanted pathways (linear dependence). For each component of

a particular unwanted pathway, for example tign compo-

nent, an equation of the form, = X, a!py holds, with the

same expansion coefficients. The summation runs over all
wanted pathways (2 if the detection is considered for the
application of a field gradient, or"af it is not). Sincepy., = +1
—Pn, and'pray = —'Pry Prst = 2 @lPwes IS also valid, and 0 / \
the linear dependence of the unwanted pathway on the wanted _; \ \
pathways is preserved. Thus, the suppressive subspace remains
empty. It is shown in the Appendix that the wanted pathways

in the current case (one-pulse, or echo) span a subspace of
dimensionalityN. Since the overall space {R""*, a one-
dimensional free subspace exists. It is straightforward to acco-
modate for more than a singke-pulse (see Appendix). The
suppressive subspace will remain empty, but the dimensional-
ity of the free subspace will increase by 1 whenever a new
period of free precession is included which is separated by a
former one by amr-pulse. If m-pulses are imperfect, additional
unwanted pathways are excited which are not elements of the
selective subspace. As is well known, these unwanted path-
ways, and only these, can be purged by a pair of gradient pulses
surrounding the refocusing-pulse @3).

In summary, for homonuclear experiments where the coher-
ence order of the wanted pathways is always different from
zero, and ignoring unwanted pathways induced by imperfect [1P]
RF pulses, the suppressive subspace is empty whenever it is
intended to rephase all wanted coherence transfer pathways, as
might be done by phase cycling. The selective subspace hagG. 2. (A) Pulse sequence of COSY experiment with pathway diagran
maximum dimension, and all unwanted pathways are elemefiis (B) The geometry of pathway selection in COSY is describefRin as
of the selective subspace. No sequence of pulsed field gradiétmée 2;;”(‘1’0;;3:'\,32?/;?39(E’leycisls)'?ﬁ;%aie Fﬁ"”f] f)"”‘”wbhilr’:‘igéoﬁf;'ed
exists which rephases all wanted pathways and dephases ar%lﬂﬁ/onent is the coherence order during quadrature detection, and the sec
the unwanted ones. To discriminate between wanted and @éinponent represents transverse magnetization diinghe wanted path-
wanted signals, the dimension of the selective subspace hagdys spanR?® (selective subspace), and the suppressive as well as the fr
be reduced by 1, say frointo L — 1. Some of the unwanted subspace are empty. Any sequengt,g’, andg’, is also represented by a
pathways may have a component orthogonal to the reducgg® nIR"- It is not possible to rephastp and °p, as such a gradient

. . . . . sequence would correspond to a vector|Rf which is orthogonal to both
selective subspace, i.e., a one-dimensional suppressive %)lé iways. However, if only one (half) of the two wanted pathways should b
space may be formed, and those unwanted pathways cane@gned, e.g.p, the selective subspace is one-dimensiorigl, (indicated by
dephased. There are infinitely maniz (— 1)-dimensional aline), and a rephasing gradient vector can be easily found (open arrow). Su
subspaces dRL but, as discussed in the Appendix, there are atsequence dephases the ot_her Wanteq pathway, as well as some unwa
most 2~V wanted pathways ir‘R(Lfl) (or 2=D-1 i the pathways, e.g’p = (—1, 0) which can be induced by an imperfect preparation
detection period is included), instead of & |R" (or 247 Y). pulse.

Therefore, at most only half of the wanted pathways in com-

parison to a phase cycled experiment can be retained wherence order of wanted pathways equals zero in one or seve
signal selection is done by pulsed field gradients, and half périods of free precession. A field gradient applied in such
the maximum number of wanted pathways will be dephaseériod will have no effect on the wanted pathways (Eg. [1])
together with some unwanted pathways. As an example, tngt may dephase any unwanted pathway with a nonzero c
pathway selection of the COSY experiment is geometricalhyerence order prevailing in this period of free precession. Th
analyzed in Fig. 2. In order to dephase all, or at least the magtproach is often used to purge unwanted signals while
important, unwanted signals, it might be neccessary to increasaximum number of wanted pathways are retairiz®). (

the suppressive subspace by a further reduction of the selectivin principle, heteronuclear experiments can be carried ot
subspace. Again, the number of wanted pathways which candbeng similar lines as homonuclear ones. The composite c
possibly rephased will be halved by each such step. herence order, a real number, replaces the integer coherer

The preceding analysis excludes experiments where the ooder as components of the pathway vectors (the results of il

t; detection
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Appendix are derived for real components). It is in the numbeaumber of wanted pathways can be selected by the application
of pathways into which a given wanted pathway can splifield gradients in comparison to phase cycling, and a lower signe
whenever a further period of free precession for the applicatitmnoise is obtained.
of a field gradient is included in the analysis, that heteronuclearThe experimetalist is forced to find a compromise in applying
experiments can be different. The coherence orders of thgradient sequence which rephases as many wanted pathway
different species can change simultanously (e.g., by RF pulgsssible while a few, but the most important, unwanted signals a
applied to two species at the same time), and a wanted pathwappressed. To obtain an optimum signal-to-noise, it is preferak
can split into more than two new pathways, say four. Come attenuate unwanted pathways confined to a one-dimensiot
versely, the number of wanted pathways will be quarteretippressive subspace. The application of several gradient :
when the dimensionality of the selective subspace is reduageences along different directions in space is then not necessa
by 1, as can be seen by a treatment analogous to the hoisinee signal selection can be done by a single sequence wh
nuclear case where only a duplication of wanted pathwagpans the one-dimensional suppressive subspace. Field gradie
occured. An example for pathway selection of a heteronuclesong three orthogonal directions are necessary in some spec
experiment is discussed in detail in Part 3B). cases where the unwanted pathways may span a high dimensio
It is interesting to apply a geometric analysis to the speciadanifold. Their use is particularly valuable where gradient re
case of a two-dimensional experiment where field gradients adled echoes have to be avoided, as for example in the context
applied only during the evolution period and the detectiomater suppressior?9, 30, or where magic angle gradients are
period. The wanted pathways are readily described by Eqgs. [@@plied to suppress multiple quantum interference of bulk wate
to [6¢], with the second component representing the coherer{dg, 39.
order prevailing during the evolution period (e.g-n = =1 The geometrical approach provides insight into the problem ¢
corresponds to frequency labeling of transverse magnetizatipathway selection, and simple NMR experiments may be an
see also Fig. 2). If the two-dimensional data set is amplitutized completely. To find suitable gradient sequences in comple
modulated with respect to the evolution peric2d)( both applications, in particular for multidimensional experiments, the
wanted pathways are selected by phase cycling. As shogeometrical approach has been implemented numerically. Ti
earlier, one of the two wanted pathways has to be sacrificegbgram TRIPLE_GRADIENT, as described in Part3B), en-
when field gradients are applied, since otherwise a suppressitfes the user to calculate optimal gradient sequences for sig
of unwanted signals is impossible. Recently, schemes for phaséection in each individual NMR experiment.
modulated data acquisition were implemented in some exper-
iments @5, 2. In comparison to amplitude modulation, a APPENDIX
duplication of the amplitude of the two wanted pathways
occurs. In these so-called sensitivity enhanced experimentsSome properties of vectors ", isomorphic toN-tuple of
two data sets, where each of the two wanted pathways'@al numbers (coordinate vector), with particular restrictions o
selected at a time by phase cycling, are acquired separately gt choice of coordinates are derived.
processed in a combined manner to obtain an improvement inThe discussion is restricted to vectors with component
signal-to-noise of up t0/2. Clearly, a sequence of pulsed fielddifferent from zero. Consider a set of vectors with the propert
gradients can be found which retains one of the wanted pathat the magnitude of each component is set to some pre-fix
ways and suppresses some unwanted pathways at the sB@izero value, say; > 0 for theith component, but the sign
time (Fig. 2). Indeed, field gradients can be applied in sen&-undetermined. Such a set is denoted as a set of complem:
tivity enhanced experiments without a concomitant loss &y vectors of R". A member of the set is (using notation as
signal-to-noise in comparison to phase cycli2@,(29. row vectors)

CONCLUSION X=(Fay, Ta, *as ..., Fay),

Signal selection by field gradients implies in general the rephagith a definite choice of either the plus or the minus sigr
ing of several wanted pathways and the suppression of a manifitidependently for each component. The number of members
of unwanted pathways at the same time. These are competitive set is easily counted to bé'.2There are strong linear
requirements, and the signal selection by field gradients is limitettpendencies within the set, e.g., for any membére anti-
The number of wanted pathways retained by field gradients candaeallel vector—x is also a member. However, as can be
increased only at the cost of reducing the number of unwanteerified by the Gram—-Schmidt orthogonalization procedur
pathways which are possible to suppress, and vice versa. In n{@4), the set spaniR", i.e., a base ofR" can be constructed
widely employed experiments (ignoring imperfections of RFom complementary vectors oR".
pulses, the exceptions are sensitivity enhanced experiments, amtls a further requirement, assume that one oftheompo-
experiments where the coherence order of wanted pathwaysésits is completely specified (magnituated sign); say theth
zero while gradients are applied (purging)) at most only half of teemponent is identical t@, in each vector,
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X=(xay, ...,Bw . ..., Tay). of the components af(N — 2) may simply represent the fixed
componentg,. In this case, the number of members 2

Clearly, there are only'"®* vectors of this form, and they mayand their span is of d'lmens!onalmy— 1. Itis straightforward
to generalize the discussion when more than one echo

be called a reduced set of complementary vectofRdf The
P y ﬂ formed by the vectors. For each further echo, the number ¢

notation forx can be rationalized by collecting tHé — 1 | R is halved. and the di ional
components with independent sign alternation in a vectBPmPlementary vectors 9R" is halved, and the dimensional-

a(N — 1), sox = (B« a(N — 1)). To anymember of the ity of the subspace spanned by these vectors is reduced by
reduced set;x = (B, «(N — 1)), the vector which has In summary, it has been shown that a (reduced).set (
components of opposite sign (except tkih), X = (Bi, complementary vectors dR" forming M echoes comprises

—a(N — 1)), isalso a member of the reduced set. The set g (2""7) members, and the set spans a subspace

linear combinationsx — "x)/2 = (0, a(N — 1)), ("x — dimensionalityN — M.

“x)/2 = (0, —a(N — 1)), for all realizations ofa(N — 1)
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