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A geometrical description for the selection of coherence transfer
athways in high resolution NMR by the application of pulsed
eld gradients along three orthogonal directions in space is pre-
ented. The response of the spin system is one point of the three-
imensional Fourier transform of the sample volume affected by a
equence of field gradients. The property that a pathway is re-
ained (or suppressed) when a sequence of field gradients is ap-
lied is expressed by the property of vectors, representing the
athway and the sequence, respectively, to be orthogonal (or not
rthogonal). Ignoring imperfections of RF pulses, and with the
xception of sensitivity enhanced experiments and experiments
here the relevant coherence order is zero while field gradients
re applied, it is shown that at most only half of the relevant
athways, as compared to a phase cycled experiment, are
etained when field gradients are used for signal selection.

1999 Academic Press

INTRODUCTION

The perturbation of a nuclear spin system by RF pu
llows the excitation of coherent superpositions of eigens
nd their transformation into each other. A particular serie
uch coherence transfers forms a coherence transfer pa
1). As RF pulses cause several coherence transfers to
imultanously, a manifold of pathways are excited during
ourse of an experiment. Multidimensional NMR spectrosc
an be used to map coherence transfer pathways, and th
rovides detailed information about the structure and dyna
f molecular system in the liquid phase. However, the sp
ould be hopelessly complicated if all the excited pathw
ere allowed to contribute, and the selection of partic
oherence transfer pathways is a first-rank element of
MR experiment.
The selection can either be performed by a phase cy

rocedure (2–4), where different experiments recorded w
ifferent settings of the phases of the RF pulses are comb
r by the application of pulsed field gradients (5–7). The use o
eld gradients is often preferred over phase cycling, sinc
xperiments are less susceptible to artifacts (not 1 noise (8),

nherent water suppression (9)), and spectra are, in general,
1
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igh quality (10, 11). The technique can be disadvantageou
omparison to phase cycling with respect to signal-to-n
or some important RF sequences which are also basic

ng blocks of multidimensional experiments, such as ho
nd heteronuclear correlation, and multiple quantum fil
ignal selection by pulsed field gradients implies the los
alf of the pathways which encode for the relevant informa
f the experiment, whereas the maximal number is retaine
hase cycling (12). It has been argued that such a los
ommon to most experiments when pulsed field gradient
pplied.
Recently, a geometric approach for the calculation of

ble sequences of pulsed field gradients for signal select
ny NMR experiment was presented (13). The method wa
erived for a case where field gradients are applied alo
ingle direction in space, the direction of the Zeeman fiel
In the present paper, the earlier work is extended to
ith the general situation where field gradients are app
long any direction in space. Such gradients can be gene
ith three mutually orthogonal coils. The action of an arbitr
ombination of pulsed field gradients along any directio
pace on a coherence transfer pathway is described by a
etric approach. The geometry is used to specify those e

ments where signal selection by pulsed field gradien
nherently accompanied by a loss of signal-to-noise in c
arison to phase cycling. The treatment focuses on bas
ects of signal selection by field gradients and is made fo
ase of idealized experiments. The influences of instrum
mperfections, relaxation, and exchange are not consider

PULSED FIELD GRADIENTS ALONG
ORTHOGONAL DIRECTIONS

A pulsed field gradient exposes a spin system for a
efined period to a spatially inhomogeneous magnetic
B(r , t) 5 (0, 0, Gxfx(t) x 1 Gyfy(t) y 1 Gzfz(t) z ) which

s aligned along the homogeneous Zeeman field. It is ass
hat a spatially constant field gradient can be generated
ach of three mutually orthogonal directions, thex-, y-, and
1090-7807/99 $30.00
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2 LORENZ MITSCHANG
-axes, respectively. The amplitudeGA, for A 5 x, y, or z, of
field gradient may have the shape of a smooth functionf A(t),
here21 # f A(t) # 1 for 0 # t # tA0, andtA0 is the overal
uration of the pulse.
The coupling of a heteronuclear spin system of two spe
ith gyromagnetic ratiosg I andgS, and Cartesian spin oper

ors I i 5 (I ix, I iy, I iz) and Sk 5 (Skx, Sky, Skz), respectively
ith the magnetic fieldDB(r , t) is described by the Hamilto
ian

HG 5 2O
i

g I$Gx fx~t! xi 1 Gy fy~t! yi 1 Gz fz~t! zi%I iz

2 O
k

gS$Gx fx~t! xk 1 Gy fy~t! yk 1 Gz fz~t! zk%Skz.

he loss of signal intensity by lateral diffusion in an inhom
eneous magnetic field (14), as well as the chemical shieldi
;1025), is neglected. Thexj , yj , zj are the coordinates of th
uclei. Since the applied field gradients are much too we
esolve the different nuclear sites within a molecule (G 5 100
auss cm21), the same coordinates,x, y, andz, respectively
an be used for each site:

HG 5 2$Gx fx~t! x 1 Gy fy~t! y 1 Gz fz~t! z%$g II z 1 gSSz%.

z 5 ¥ i I iz andSz 5 ¥ k Skz are thez-components of the tot
pin angular momenta of each species.
HG induces a precession of the spin system. A heteronu

oherence, addressed by coherence orderspI and pS with
espect to each species, experiences a phase shift of

$g Ip
I 1 gSp

S%$xGx E
0

tx0

fx~t!dt

1 yGy E
0

ty0

fy~t!dt 1 zGz E
0

tz0

fz~t!dt% . [1]

n terms of quantitiesgA, for A 5 x, y, z, called “strength
13, 15),

gA :5 GA E
0

tA0

fA~t!dt,

nd the composite coherence order (13, 16),

p :5 pI 1 SgS

g I
DpS,

q. [1] readsg Ip{ xgx 1 ygy 1 zgz}.
s

-

to

ar

In the general case of an experiment which has a totalF
eriods of free precession, a number of pulsed field grad
f different amplitudes, time profiles, and durations may
sed. Those pulses which are along the same axis ca
epresented by a vector ofF real components,

gA :5 1
g1

A

g2
A

z
z
z

gF
A

2 ,

ith A 5 x, y, z. gi
A is the strength of a pulse applied in

th period along the specified axis.gi
A 5 0 if no field gradien

s applied. Analogously, a coherence transfer pathway is
esented by a vectorp of F real components,

p :5 1
p1

p2

z
z
z

pF

2 ,

herepi is the composite coherence order prevailing in thei th
eriod of free precession.
For a particular pathwayp, the phase shifts induced by t

ifferent field gradients accumulate during the course o
xperiment. The overall phase shift can be expressed c
iently by extending the vector notation introduced above.
ectorsgA, p are considered as elements of the Euclidean s
RF, equipped with an inner product (xuy) :5 x ty 5 ¥ i

F xiyi

etween any two vectorsx and y. The transposed form of
ectorx is x t, andx ty expresses the inner product as the ma
roduct of the row vectorx t and the column vectory. The
hase shift at the end of the experiment can be calculate

g I$~O
i

F

pig i
x! x 1 ~O

i

F

pig i
y! y 1 ~O

i

F

pig i
z! z%

5 g I$~pugx! x 1 ~pugy! y 1 ~pugz! z%

5 $kxx 1 kyy 1 kzz% 5 k tr ,

ith

r :5 Sx
y
z
D and k :5 Skx

ky

kz

D 5 Sg I~pugx!
g I~pugy!
g I~pugz!

D .

he phase shift is proportional to the coordinates, express
he inner product of the wave vectork and the position vecto
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3NMR SIGNAL SELECTION: I. GEOMETRICAL ANALYSIS
. The proportionality constants, the components ofk, are
etermined by the inner product of vectorsp andgA of uRF.
An individual pathwayp gives rise to a macroscopic sign

enoted bys(k). s(k) comprises the contributions from
olume elements of the sample,

s~k ! 5 E E
V

E r~r ! M0~r !exp$ik tr %dv. [2]

0(r )exp{ik tr } dv is the amplitude of the contribution fro
he volume elementdv 5 dx d y dzat positionr. r(r ) is the
patial spin density. Equation [2] is a three-dimensional
ier transformation fromr -space tok-space which represen
he basic relation of Fourier imaging (17, 18).

The excitation profile or, equivalently, according to
rinciple of reciprocity (19), the detection profile are assum

o be uniform. The sample volume affected by the field gr
nts may be a cylinder of radiusR and lengthL whose
ymmetry axis is along the laboratoryz-axis (common shape
MR tubes). In this case, and for a homogeneous solutio
olecules,r(r ) 5 1/(pR2L) 5 constant within the cylinde
ut vanishes outside, and Eq. [2] yields

s~k !

s~k 5 0!
5

2J1~krR!

krR

sin~kzL!

kzL
, with kr 5 Îkx

2 1 ky
2.

[3]

1( x) is the Bessel function of the first kind of first order (20).
ny possible combination of pulsed field gradients is re
ented by vectorsgx, gy, andgz, and their action on a particul
oherence transfer pathwayp can be determined by the ev
ation of expression [3].
A pathwayp is fully retained, i.e.,s(k) 5 s(k 5 0), only if

k 5 0 N ~pugx! 5 ~pugy! 5 ~pugz! 5 0, [4a]

.e., the vectorsgx, gy, andgz must be orthogonal top. In this
ase, the coherence transfer pathway may be calledrephased
s the effects of the different pulsed field gradients cancel
ther, and a coherence transfer echo is formed (5).
Otherwise, fork Þ 0, i.e., if one or several of the vectorsgx,

y, andgz are not orthogonal top, the pathway is attenuated
certain extent and may be calleddephased.
The attenution of a pathway can be quantified by Eq. [3

ractical applications the arguments,kzL andkrR, have value
f the order 102 and larger. The asymptotic behavior of

unction 2J1(krR)/(krR) is very accurately described by (20)

2J1~krR!

k R
3

2Î2

Îp

sin~krR 2 p/4!

~k R! 3/ 2 .

r r
-

i-

of

-

ch

n

1( x)/x and sin(x)/x are oscillatory functions. However, e
ression [3] is an idealization, and its zero crossings are
erimentally not feasible (inhomogeneous excitation, inho
eneous Zeeman field). An estimate of the attenuation i
nvelope function of expression [3] for large arguments

s~k !

s~k 5 0!
<

2Î2

Îp

1

~krR! 3/ 2kzL
, for krR, kzL $ 1. [4b]

he attenuation is stronger for larger components ofk, i.e., for
arger projections of the applied gradient sequences ont
athway (if the same strengths of the individual pulses are u

SELECTION OF COHERENCE TRANSFER PATHWAYS

he Selective, Suppressive, and Free Subspaces

The evolution of a spin system during an NMR experim
s described by the set of all coherence transfer pathw

1p, . . . , Qp, Q11p, . . . , Jp}, which are excited by the R
ulses. Each pathway is represented by a vector ofuRF, where
is the total number of periods of free precession. Let the
vectors, {1p, 2p, . . . , Qp}, be the wanted pathways, tho

hich code for the relevant information of the experiment.
emainingJ 2 Q pathways, {Q11p, Q12p, . . . , Jp}, are the
nwanted pathways. The purpose of applying pulsed
radients is to block the unwanted coherence transfer path

rom contributing to the detected signal, whereas the wa
athways should be detected without attenuation. Accordi
qs. [4a] and [4b], sequences of pulsed field gradients,gx, gy,
ndgz, have to be found which are orthogonal to each wa
athway but have possibly strong projections onto the diffe
nwanted pathways.
Because of the linearity of the inner product, each of

ectors gx, gy, and gz will be orthogonal not only to eac
anted pathway, but also to any linear combination of th
ectors. The set of all linear combinations of vectors1p,

2p, . . . , Qp} forms a subspace ofuRF, denoted by squa
rackets [1p, 2p, . . . , Qp]. It is called theselectivesubspace, a

he vectorsgx, gy, andgz must not have a component along [1p,
2p, . . . , Qp].

For the determination of the projections of the vectorsgx, gy,
ndgz onto an unwanted pathway, it is sufficient to take
ccount the component of the unwanted pathway whic
rthogonal to the selective subspace. The orthogonal co
ent, denoted bykq, can be calculated by

kq 5 kp 2 O
i

~ kpuei!ei, for k 5 Q 1 1, . . . , J.

he vectors {ei} form an orthonormal basis of the select
ubspace (the basis may be constructed from the se1p,

2p, . . . , Qp} by the Gram–Schmidt orthogonalization pro
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4 LORENZ MITSCHANG
ure (21)). The componentsq of the unwanted pathways sp
gain a subspace, denoted by [Q11q, Q12q, . . . , Jq]. It is called

he suppressivesubspace, since only pathways which h
omponents along this subspace can be attenuated.
Field gradients are usually not applied in all periods of

recession (e.g., interference of field gradients with RF de
ling). In principle, the number of periods taken into acco
, can vary as 1# N # F. For N , F, it is sufficient to

epresent each pathway by a vector withF components a
efore, but the components, corresponding to periods of
recession not considered for an application of field gradi
re set to zero. Then, the pathways are effectively eleme

RN. All coherence transfer pathways excited in the exp
ent, wanted and unwanted ones, are elements of the un

he selective subspace and the suppressive subspace. B
f possible linear dependencies, the union can be smalle

RN. Let M be the dimension of the union, andM # N. The
ector spaceuRN can be decomposed into the direct sum21)

uRN 5 @ 1p, 2p, . . . , Qp# ! @ Q11q,

Q12q, . . . , Jq# ! uR~N2M!. [5]

he subspaceuR(N2M) contains all vectors ofuRN which are no
lements of the other two subspaces. It is called thefree
ubspace, since neither any wanted pathway nor any unw
athway has components alonguR(N2M). It is shown in the
ppendix that a free subspace is present whenever a per

efocusingp-pulse is applied in an experiment. As an exam
he decomposition ofuR3, corresponding to a homonucle
ultiple quantum experiment where gradients are applie

hree periods of free precession, is illustrated in Fig. 1.
Decomposition [5] provides a framework for the descripti

f signal selection by pulsed field gradients: To repha
anted pathways, the sequencesgx, gy, and gz must be ele
ents of the union of the suppressive subspace and th

ubspace. A particular unwanted pathway can only be
ressed if it is not an element of the selective subspac
quivalently, if it has a component along the suppres
ubspace. Otherwise, the unwanted pathway is invar
ephased by any sequence of field gradients which rephas
anted pathways, and the pathway selection would be in
lete. Therefore, most of the unwanted pathways should
component along the suppressive subspace, and, at the

ime, as many wanted pathways as possible should be ele
f the selective subspace. The number and distributio
athways within the selective and suppressive subspace
ends crucially on the choice of periods of free preces
here gradients are applied (Eq. [5]). The placement of
ient pulses is a particularly complex problem in multidim
ional experiments with many periods of free precession
e
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omparison to Phase Cycling

For the majority of NMR experiments, it is a particular va
f the magnitude of the coherence order in each period o

FIG. 1. (A) Basic pulse sequence for homonuclear double-quantum
roscopy (1). The thin and thick bars representp/2- andp-pulses, respectivel
nly the wanted pathways are indicated on the pathway diagram. (
rinciple, field gradients can be applied in all four periods of free preces
nd pathway vectors are elements ofuR4. If it is intended to apply gradients
ll periods except the detection period, the fourth component of each pa
ector, representing the detection period, can be set to zero. According
athways are effectively elements ofuR3 and may be represented by vect
ith three components. There are four wanted pathways, (1,21, 2), (1,21,
2), (21, 1, 2), and (21, 1,22), which are shown as bold arrows in the figu
ince all wanted pathways lie in a plane, the selective subspace has
ionality 2. For a perfectly refocusingp-pulse, the unwanted pathways
ifferent form the wanted ones only with respect to the coherence
revailing during the evolution timet 1 (unwanted multiple quantum order);
xample are the dashed filled arrows in the figure, (1,21, 0), and (21, 1, 0).
ny unwanted pathway lies in the plane spanned by the wanted ones;

ore, the suppressive subspace is empty, and a one-dimensional free su
xists. Such a decomposition of the overall space (uR3) is typical for experi
ents where refocusingp-pulses are applied (see text). Imperfections of
-pulse can induce unwanted pathways which lie outside the plane
hown). Any gradient sequence along the free subspace, e.g., (0, 1, 1
rrow), can dephase these artifacts while all four wanted pathway
ephased. However, the unwanted multiple quantum signals will als
ephased.
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5NMR SIGNAL SELECTION: I. GEOMETRICAL ANALYSIS
recession which encodes for the relevant information,
anted pathways with opposite sign of that value contri
qually to the desired signal. Phase cycling can be us
ollect such complementary pathways (2), and thereby th
aximal number of wanted pathways, while often the m

ignificant unwanted pathways are suppressed. Optimum
al-to-noise is obtained in these experiments. When s
election is performed by pulsed field gradients, the ultim
oal is to rephase the maximal number of wanted pathway
ame as in the phase cycled version, but to dephase th
anted ones at the same time. This is not possible for
xperiments. The suppressive subspace is empty whenev

ntended to rephase the maximal number of wanted pathw
nd, consequently, no sequence of pulsed field gradients

or such a task. To discriminate between wanted and unw
athways, it is neccessary to create a nonempty suppre
ubspace. As a consequence, the number of wanted pat
hich can be refocused will be halved.
The class of experiments for which the assertions are tr

pecified by induction with respect to the number of pu
eld gradients,N, which are applied during an experiment.
n experiment with a total ofF periods of free precession, t
ifferent pathways are represented by vectors where the fiN
omponents are associated with the periods where gradien
pplied, and the lastF 2 N components are zero (see Eq. [

t is no restriction when the ordering of the component
athway vectors is different from the real succession of g
nt pulses in an experiment. The following analysis is base

he specific structure of the pathway vectors, and some of
mportant properties are derived in the Appendix. To simp
he notation, only homonuclear experiments are consider

The discussion is first restricted to experiments where
oherence order of the wanted pathways is different from
n any period of free precession and where no refocu
-pulses are applied. Thei th component of each wanted pa
ay is 1n or 2n, with some integern, and the compone

epresenting the detection period equals21 (quadrature dete
ion (22)). When field gradients are applied inN periods of free
recession, the pathway vectors are elements ofuRN (N non-
ero components). The total number of wanted pathw
ounts up to 2N when the detection period is excluded from
periods of free precession where field gradients are app

nd it equals 2(N21) when the detection period is included (
ppendix).
Let us assume the experimentalist decides to apply a s

eld gradient pulse (N 5 1) in the detection period of th
xperiment (prior to detection). In our notation, the first c
onent of each pathway vector is some integer (the cohe
rder prevailing in the detection period), and the remai
2 1 components are equal to zero. Obviously, there is

ne wanted pathway,1p t 5 (21, 0, . . . , 0),which already
pansuR1, and the suppressive subspace as well as the
ubspace are empty (Eq. [5]).
Now, a further period of free precession may be anticip
d
e
to
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or the application of a pulsed field gradient (N 5 2). p splits
nto two wanted pathways:

1p :5 1
21
0
0
z
z
0
2 3 1p1 :5 1

21
1n
0
z
z
0
2 , 1p2 :5 1

21
2n
0
z
z
0
2 . [6a]

he selective subspace spanned by the single wanted pa
or N 5 1, [1p], is a subspace of the selective subspace

5 2, [1p1, 1p2]. Specifically, the linear combination

1p1 1 1p2

2
5 1

21
0
0
z
z
0
2 [6b]

pans [1p], as it coincides with the vector1p. The linear
ombination

1p1 2 1p2

2
5 1

0
1n
0
z
z
0
2 [6c]

enerates a vector which is linearly independent of1p. It
ollows that the wanted coherence transfer pathways fo
aseN 5 2 span a selective subspace of a dimension tha

arger than in the caseN 5 1. Since the addition of a sing
eriod of free precession can only increase the dimensio

he overall space by 1 (uR2), the suppressive and free su
paces remain empty. The former arguments can be rep
henever a further period of free precession is included

he limit, N 5 F, is reached, and the suppressive and
ubspaces are empty, whatever periods of free precessi
onsidered for a possible application of gradient pulses.
ame result is obtained in a similiar calculation (not show
ne starts out from a period of free precession different tha
etection period for the placement of a first gradient pulse
lso the Appendix).
The situation is different for experiments where the n

ncluded period of free precession is separated from one o
ormer periods by ap-pulse. For an idealp-pulse, the com
onent representing the newly added period, say the (N 1 1)th
omponent, is the negative of some other component, sa
th. As the suppressive subspace is empty prior to the i
ion of a further period of free precession, each unwa
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6 LORENZ MITSCHANG
athway can be represented by a linear combination o
anted pathways (linear dependence). For each compon
particular unwanted pathway, for example theNth compo-

ent, an equation of the formpN 5 ¥ i a i
ipN holds, with the

ame expansion coefficientsa i . The summation runs over a
anted pathways (2(N21) if the detection is considered for t
pplication of a field gradient, or 2N if it is not). SincepN11 5
pN, and ipN11 5 2 ipN, pN11 5 ¥ i a i

ipN11 is also valid, and
he linear dependence of the unwanted pathway on the w
athways is preserved. Thus, the suppressive subspace re
mpty. It is shown in the Appendix that the wanted pathw

n the current case (onep-pulse, or echo) span a subspace
imensionalityN. Since the overall space isuRN11, a one-
imensional free subspace exists. It is straightforward to a
odate for more than a singlep-pulse (see Appendix). Th

uppressive subspace will remain empty, but the dimensi
ty of the free subspace will increase by 1 whenever a
eriod of free precession is included which is separated

ormer one by ap-pulse. Ifp-pulses are imperfect, addition
nwanted pathways are excited which are not elements o
elective subspace. As is well known, these unwanted
ays, and only these, can be purged by a pair of gradient p
urrounding the refocusingp-pulse (23).
In summary, for homonuclear experiments where the co

nce order of the wanted pathways is always different
ero, and ignoring unwanted pathways induced by impe
F pulses, the suppressive subspace is empty wheneve

ntended to rephase all wanted coherence transfer pathwa
ight be done by phase cycling. The selective subspac
aximum dimension, and all unwanted pathways are elem
f the selective subspace. No sequence of pulsed field gra
xists which rephases all wanted pathways and dephases

he unwanted ones. To discriminate between wanted an
anted signals, the dimension of the selective subspace
e reduced by 1, say fromL to L 2 1. Some of the unwante
athways may have a component orthogonal to the red
elective subspace, i.e., a one-dimensional suppressive
pace may be formed, and those unwanted pathways c
ephased. There are infinitely many (L 2 1)-dimensiona
ubspaces ofuRL but, as discussed in the Appendix, there a
ost 2(L21) wanted pathways inuR(L21) (or 2(L21)21 if the
etection period is included), instead of 2L in uRL (or 2(L21)).
herefore, at most only half of the wanted pathways in c
arison to a phase cycled experiment can be retained
ignal selection is done by pulsed field gradients, and ha
he maximum number of wanted pathways will be deph
ogether with some unwanted pathways. As an example
athway selection of the COSY experiment is geometric
nalyzed in Fig. 2. In order to dephase all, or at least the

mportant, unwanted signals, it might be neccessary to inc
he suppressive subspace by a further reduction of the sel
ubspace. Again, the number of wanted pathways which c
ossibly rephased will be halved by each such step.
The preceding analysis excludes experiments where th
e
t of
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erence order of wanted pathways equals zero in one or s
eriods of free precession. A field gradient applied in su
eriod will have no effect on the wanted pathways (Eq.
ut may dephase any unwanted pathway with a nonzer
erence order prevailing in this period of free precession.
pproach is often used to purge unwanted signals wh
aximum number of wanted pathways are retained (23).
In principle, heteronuclear experiments can be carried

long similar lines as homonuclear ones. The composite
erence order, a real number, replaces the integer cohe
rder as components of the pathway vectors (the results

FIG. 2. (A) Pulse sequence of COSY experiment with pathway diag
1). (B) The geometry of pathway selection in COSY is described inuR2, as
here are two periods of free precession. Phase cycling can be used to se
wo wanted pathways,1p 5 (21, 11) and 2p 5 (21, 21), where the firs
omponent is the coherence order during quadrature detection, and the
omponent represents transverse magnetization duringt 1. The wanted path
ays spanuR2 (selective subspace), and the suppressive as well as th
ubspace are empty. Any sequence,gx, gy, andgz, is also represented by
ector in uR2. It is not possible to rephase1p and 2p, as such a gradie
equence would correspond to a vector ofuR2 which is orthogonal to bot
athways. However, if only one (half) of the two wanted pathways shou
etained, e.g.,1p, the selective subspace is one-dimensional, [1p] (indicated by
line), and a rephasing gradient vector can be easily found (open arrow)
sequence dephases the other wanted pathway, as well as some un

athways, e.g.,3p 5 (21, 0) which can be induced by an imperfect prepara
ulse.
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7NMR SIGNAL SELECTION: I. GEOMETRICAL ANALYSIS
ppendix are derived for real components). It is in the num
f pathways into which a given wanted pathway can s
henever a further period of free precession for the applic
f a field gradient is included in the analysis, that heteronu
xperiments can be different. The coherence orders o
ifferent species can change simultanously (e.g., by RF p
pplied to two species at the same time), and a wanted pa
an split into more than two new pathways, say four. C
ersely, the number of wanted pathways will be quart
hen the dimensionality of the selective subspace is red
y 1, as can be seen by a treatment analogous to the h
uclear case where only a duplication of wanted pathw
ccured. An example for pathway selection of a heteronu
xperiment is discussed in detail in Part II (33).
It is interesting to apply a geometric analysis to the spe

ase of a two-dimensional experiment where field gradient
pplied only during the evolution period and the detec
eriod. The wanted pathways are readily described by Eqs

o [6c], with the second component representing the cohe
rder prevailing during the evolution period (e.g.,6n 5 61
orresponds to frequency labeling of transverse magnetiz
ee also Fig. 2). If the two-dimensional data set is ampli
odulated with respect to the evolution period (24), both
anted pathways are selected by phase cycling. As s
arlier, one of the two wanted pathways has to be sacr
hen field gradients are applied, since otherwise a suppre
f unwanted signals is impossible. Recently, schemes for p
odulated data acquisition were implemented in some e

ments (25, 26). In comparison to amplitude modulation
uplication of the amplitude of the two wanted pathw
ccurs. In these so-called sensitivity enhanced experim

wo data sets, where each of the two wanted pathwa
elected at a time by phase cycling, are acquired separate
rocessed in a combined manner to obtain an improveme
ignal-to-noise of up to=2. Clearly, a sequence of pulsed fi
radients can be found which retains one of the wanted
ays and suppresses some unwanted pathways at the

ime (Fig. 2). Indeed, field gradients can be applied in se
ivity enhanced experiments without a concomitant los
ignal-to-noise in comparison to phase cycling (27, 28).

CONCLUSION

Signal selection by field gradients implies in general the rep
ng of several wanted pathways and the suppression of a ma
f unwanted pathways at the same time. These are comp
equirements, and the signal selection by field gradients is lim
he number of wanted pathways retained by field gradients c

ncreased only at the cost of reducing the number of unwa
athways which are possible to suppress, and vice versa. In
idely employed experiments (ignoring imperfections of
ulses, the exceptions are sensitivity enhanced experiment
xperiments where the coherence order of wanted pathw
ero while gradients are applied (purging)) at most only half o
r
t,
n

ar
he
es
ay
-
d
ed
o-
s

ar

al
re
n
a]
ce

n;
e

n
ed
ion
se
r-

s
ts,
is
but
in

h-
me
i-
f

s-
old
ive
d.
be
ed
ost

and
is

e

umber of wanted pathways can be selected by the applicat
eld gradients in comparison to phase cycling, and a lower si
o-noise is obtained.

The experimetalist is forced to find a compromise in appl
gradient sequence which rephases as many wanted pathw
ossible while a few, but the most important, unwanted signa
uppressed. To obtain an optimum signal-to-noise, it is prefe
o attenuate unwanted pathways confined to a one-dimen
uppressive subspace. The application of several gradie
uences along different directions in space is then not nece
ince signal selection can be done by a single sequence
pans the one-dimensional suppressive subspace. Field gr
long three orthogonal directions are necessary in some s
ases where the unwanted pathways may span a high dimen
anifold. Their use is particularly valuable where gradien

alled echoes have to be avoided, as for example in the con
ater suppression (29, 30), or where magic angle gradients
pplied to suppress multiple quantum interference of bulk w
31, 32).

The geometrical approach provides insight into the proble
athway selection, and simple NMR experiments may be

yzed completely. To find suitable gradient sequences in com
pplications, in particular for multidimensional experiments,
eometrical approach has been implemented numerically
rogram TRIPLE_GRADIENT, as described in Part II (33), en-
bles the user to calculate optimal gradient sequences for
election in each individual NMR experiment.

APPENDIX

Some properties of vectors ofuRN, isomorphic toN-tuple of
eal numbers (coordinate vector), with particular restriction
he choice of coordinates are derived.

The discussion is restricted to vectors with compon
ifferent from zero. Consider a set of vectors with the prop

hat the magnitude of each component is set to some pre
onzero value, saya i . 0 for the i th component, but the sig

s undetermined. Such a set is denoted as a set of comple
ary vectors ofuRN. A member of the set is (using notation
ow vectors)

x 5 ~6a1, 6a2, 6a3, . . . , 6aN!,

ith a definite choice of either the plus or the minus s
ndependently for each component. The number of membe
he set is easily counted to be 2N. There are strong line
ependencies within the set, e.g., for any memberx the anti-
arallel vector2x is also a member. However, as can
erified by the Gram–Schmidt orthogonalization proced
21), the set spansuRN, i.e., a base ofuRN can be constructe
rom complementary vectors ofuRN.

As a further requirement, assume that one of theN compo-
ents is completely specified (magnitudeandsign); say thekth
omponent is identical tob k in each vector,
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x 5 ~6a1, . . . , bk, . . . , 6aN!.

learly, there are only 2N21 vectors of this form, and they ma
e called a reduced set of complementary vectors ofuRN. The
otation for x can be rationalized by collecting theN 2 1
omponents with independent sign alternation in a ve
(N 2 1), sox 5 (b k, a(N 2 1)). To anymember of the

educed set,1x 5 (b k, a(N 2 1)), the vector which ha
omponents of opposite sign (except thekth), 2x 5 (b k,
a(N 2 1)), is also a member of the reduced set. The se

inear combinations (1x 2 2x)/ 2 5 (0, a(N 2 1)), (2x 2
1x)/ 2 5 (0, 2a(N 2 1)), for all realizations ofa(N 2 1)

ithin the reduced set, is isomorphic to the set of complem
ary vectors ofuRN21, and, as discussed previously,N 2 1 base
ectors can be constructed from these linear combina
hich span a subspace of dimensionalityN 2 1. The linea
ombination (1x 1 2x)/ 2 5 (b k, 0) is linearly independent o
heseN 2 1 base vectors (since it is independent of
ombinations (1x 2 2x)/2 and (2x 2 1x)/2), and together the
orm a base ofuRN. Therefore, the reduced set of complem
ary vectors ofuRN spans the total spaceuRN.

Another restriction is to constrain a particular componen
e the negative of another component within the set of c
lementary vectors ofuRN. For example, thej th component i
a i , when thei th component equals1a i (with a i . 0), and

t is 1a i when thei th component adopts the value2a i , while
he sign of the otherN 2 2 components is uncorrelated,

x 5 ~6a1, . . . , 1/2a i, . . . , 2/1a i, . . . , 6aN!.

uch a case is denoted as an echo formed by the vector
umber of complementary vectors ofuRN forming one echo i
asily counted to be 2N21. If 11x 5 (a i , 2a i , a(N 2 2))
using collective notation) is a member of the set, then
ectors 12x 5 (a i , 2a i , 2a(N 2 2)), 21x 5 (2a i , a i ,
(N 2 2)), and 22x 5 (2a i , a i , 2a(N 2 2)) are also
embers. The linear combinations (11x 2 12x)/ 2 5 (21x 2

22x)/ 2 5 (0, 0, a(N 2 2)), and (12x 2 11x)/ 2 5 (22x 2
21x)/ 2 5 (0, 0, 2a(N 2 2)) are isomorphic to the set
omplementary vectors ofuRN22, andN 2 2 linearly indepen
ent base vectors may be constructed which span a subsp
imensionalityN 2 2. The combinations (11x 1 12x)/ 2 5
11x 2 21x)/ 2 5 (a i , 2a i , 0), and (22x 1 21x)/ 2 5 (22x

12x)/ 2 5 (2a i , a i , 0), are antiparallel vectors which sp
one-dimensional subspace. A base vector of this sub

e.g., (g i , 2g i , 0)) is linearly independent from the previou
onstructedN 2 2 base vectors, and together they form a b
or a subspace of dimensionalityN 2 1. Since any member
he set of complementary vectors ofuRN forming one echo ca
e decomposed into theseN 2 1 base vectors, their span i
ubspace of dimensionalityN 2 1. The preceding calculatio
an be virtually repeated when one echo is formed by
ectors of a reduced set of complementary vectors ofuRN. One
r

f

n-

ns

e
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o
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he

e
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ce

e

e

f the components ofa(N 2 2) may simply represent the fix
omponent,b k. In this case, the number of members is 2N22,
nd their span is of dimensionalityN 2 1. It is straightforward

o generalize the discussion when more than one ec
ormed by the vectors. For each further echo, the numb
omplementary vectors ofuRN is halved, and the dimension
ty of the subspace spanned by these vectors is reduced

In summary, it has been shown that a (reduced) se
omplementary vectors ofuRN forming M echoes comprise
N2M (2N2M21) members, and the set spans a subspac
imensionalityN 2 M.
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