
Calibration of a computer-controlled
precision wavemeter for use with pulsed lasers

Parminder S. Bhatia, Craig W. McCluskey, and John W. Keto

The design of a pulsed wavemeter to monitor the high-precision tuning of pulsed ~as well as cw! laser
sources is presented. This device is developed from a combination of silver-coated Fabry–Perot etalons
with various plate spacings. These etalons provide stepwise refinement of the wavelength to be mea-
sured. The wavemeter is controlled by a computer through a CAMAC interface, which measures the
absolute wavelength in the visible with an accuracy of 2 parts in 108. The time required for data
acquisition and computation to measure the refined wavelength with a single 2-MHz CPU is less than 100
ms. We describe the calibration of the instrument over the wavelength range 400–850 nm. We obtain
the required calibration lines by locking lasers on hyperfine transitions of iodine, uranium, rubidium, and
cesium. Methods to reduce the number of calibration lines required for calibration of the system are
described. The expected wavelength-dependent phase shift of the silver coatings is compared with that
measured for the etalon following calibration. The differences are larger than expected because of either
optical aberations or the use of centroids to measure the fringe position. © 1999 Optical Society of
America
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1. Introduction

Tunable laser systems such as dye, diode, and Ti:
sapphire, which span the visible and extend to the
UV and IR regions, are common in advanced laser
laboratories. Precision tuning of such cw lasers is
monitored by wavemeters based on measuring the
fringe difference relative to a reference laser with a
scanning interferometer.

If we define accuracy as the ratio of the standard
error in measuring the wavelength to the wave-
length, the best wavemeter for cw lasers was built1,2

by Schawlow and colleagues with an accuracy of a few
parts in 109. However, most nonlinear optics3,4 ex-
periments use pulsed lasers. In high-resolution la-
ser spectroscopy experiments the wavelength of the
atomic or molecular transition under study is derived
from measurements of the wavelength of one or more
laser lines involved in the experiment. Unfortu-
nately, the tuning of pulsed lasers cannot be moni-
tored by a scanning interferometer but rather uses
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Fabry–Perot etalons. Such a wavemeter can moni-
tor both cw and pulsed lasers. Further, single-mode
operation of the laser is not required by Fabry–Perot
etalons.

Byer et al.5 designed a pulsed wavemeter; Fischer et
al. presented6 an improved version of Byer’s design.
Konishi et al. presented a similar design.7 All these
attempts achieved precisions of 1 part in 107. Some-
what later, Snyder8 and Snyder et al.9 applied the

izeau interferometer to the measurement of the
avelengths of pulsed lasers. The oscillating fringes
long the wedge of a Fizeau interferometer allow one
o measure an approximate wavelength. This wave-
ength can then be used to determine the absolute
hase difference at a reference point along the wedge
here the thickness has been calibrated. This last
easurement of wavelength is similar to measure-
ent with a Fabry–Perot etalon and is subject to sim-

lar errors. The calibration of Fizeau wavemeters are
ensitive to wave-front curvature and the maintenance
f a precise angle of incidence to the wedge. The de-
ign of Garner10 minimizes the effect of wavefront cur-

vature. Gray et al.11 found additional reduction in
this sensitivity by a small rotation of the detector axis
relative to the axis of the wedge. They determined a
resolution of 2–3 parts in 107 with an absolute accu-
racy of 1 part in 106. Recently others have presented
compact designs with somewhat inferior precision.12–14

A wavemeter with improved absolute accuracy could
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be built by a combination of a Fizeau interferometer
with one or more Fabry–Perot etalons with increasing
thickness, or one could choose to use all etalons as in
Byer’s original design. Etalons have the advantage
that their calibration is insensitive to the wave-front
curvature and the pointing direction of the incident
laser. A wavemeter employing both etalons and a
Fizeau interferometer would also require two different
types of data-reduction technique.

We present an improved version of the designs of
Byer and Fischer et al. To reduce the temperature
and wavelength dependence of the refractive index
between etalon plates we use evacuated, silver-
coated etalons. Silver coatings were chosen because
of their high reflectivity over a broad spectral range
~390–1000 nm!. The wavemeter is connected to a
computer by a CAMAC interface. In the design of
Fischer et al. the computing time for obtaining an
bsolute wavelength is 20 s. The improvements in
ata transfer and data reduction described here re-
uce the computing time to less than 100 ms on a
ather slow, obsolete computer ~Digital PDP11y73!.
ne can use this system to determine the absolute
avelength of successive pulses of a laser operating
t a 10-Hz repetition rate. With modern computers
eadout rates of as much as 250 Hz should be possi-
le.
The optical design of this wavemeter is similar to

hat of one built earlier for operation in the UV.15

The wavemeter described here was designed to ac-
company tunable dye and diode lasers for spectros-
copy in the visible and IR. Previous wavemeters of
this type employed etalons with dielectric coatings to
obtain better finesse. While they provide better
spectral analysis of the laser pulse, dielectric coatings
result in a narrower wavelength range. The instru-
ment described here uses evacuated, Zerodur spaced
plates coated with protected, evaporated silver
~,0.25 wave of dielectric coating!. A single laser
pulse of arbitrary pulse duration with a few micro-
joules of energy is sufficient for measurement of the
absolute wavelength and observation of the mode
structure of laser light in the wavelength range 390–
900 nm.

The calibration of etalons that employ dielectric
coatings was described in two excellent papers by
Lichten.16 Because the change in phase shift with
wavelength of the reflected light is greater for dielec-
tric coatings than for metal coatings, the apparent
change in plate separation with wavelength is
greater. Without correction for the apparent change
in plate separation, metal-film-coated mirrors should
provide greater wavelength accuracy. After final
absolute calibration of the etalons, our error in mea-
sured plate separation as a function of wavelength is
similar to that obtained by Lichten for dielectric
plates, with an accuracy in plate separation for all
wavelengths of 64 nm. The absolute accuracy of the
wavemeter is 2 parts in 108 in the center of the wave-
length range, degrading to 4 parts in 108 at the ends
of the spectrum. In our case, the precision is limited
primarily by the precision of our reference wave-
lengths, particularly in the blue region of the spec-
trum, and by systematic errors in determining the
center of etalon fringes when a centroid method is
used.

2. Determination of Precise Wavelength with a
Fabry–Perot Etalon

A Fabry–Perot etalon17 consists of two plane-parallel,
highly reflecting surfaces separated by a distance d
@Fig. 1~a!#. An incident ray is multiply reflected
within the gap, and with a narrow-band point source
the interference fringes are concentric rings. The
working relation is

2d 5 ~m 1 ε!l, (1)

here l is the wavelength to be measured. The in-
erference order m is the total number of half-
avelengths that can be accommodated between the
talon plates and is therefore a perfect integer. ε is
he fractional fringe order ~0 # ε , 1!. For an evac-

uated etalon the diameter Dp of pth ring is related18

to ε by

Dp
2 5 ms~p 1 ε!, p 5 0, 1, 2, . . . , (2)

where ms 5 4f2lyd and f is the focal length of col-
lecting lens. A least-squares fit to a plot of Dp

2 ver-
sus p of the measured ring diameters determines ε:

ε 5
intercept

slope
. (3)

In the above discussion we assumed that the thick-
ness of the reflective metallic layer is zero. For pre-
cision measurements this assumption leads to
erroneous results. Thus the thickness of the metal-
lic layer, although it is small, needs to be considered.
We then see that a given partial beam is reflected

Fig. 1. ~a! Schematic of a Fabry–Perot etalon: d, plate separa-
tions; t, thickness of metal coating. ~b! Multiple interference in
the metal coatings. The metal coatings have an index of refrac-
tion n1 2 ik1, and the quartz plates have index n2. The plates are
vacuum spaced.
20 April 1999 y Vol. 38, No. 12 y APPLIED OPTICS 2487
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back and forth not only within the medium between
the two metallic layers but also within the metallic
layers @Fig. 1~b!#.

Taking the metal layer thickness into account, we
consider a boundary value problem at each reflection
in which light travels a path consisting of three media
@Fig. 1~b!#: the central medium with refractive in-

ex n0, a metal film of thickness t and complex re-
ractive index n1 2 ik1, and a fused-silica plate with

refractive index n2. At each interface, part of the
incident light is reflected and part is transmitted.
Heavens19 reviewed methods for solving the interfer-
ence of light from multiple layers including metallic
coatings. In Subsection 3.B we compare calcula-
tions with experiment.

Using a Fabry–Perot etalon, we determine wave-
length l from its approximately known value li by
he relation

l 5
2d

~m 1 ε!
, (4)

where 2d is measured by calibration ~see Section 5
below!; ε, corresponding to l, is measured according
to Eq. ~3!; and m is determined by rounding as

m 5 roundS2d
li

2 εD . (5)

This calculation leads to the correct m if

uDmu 5 UD2d
l

1
~Dli!

FSR
1 DεU , 0.5, (6)

where Dm is the error in calculation of m, D2d is the
error in the knowledge of the etalon thickness, Dε is
the error in the measurement of ε, and FSR is the free
spectral range. Inequality ~6! imposes a limit on the
acceptable error Dli in the knowledge of li. Assum-
ng for the moment that D2d ' 0 and Dε ' 0, the

maximum permitted error in li to yield the correct m
s

~Dli!max , FSRy2. (7)

@As we described below, we find in practice that sta-
tistical and reproducibility errors Dε are negligible in
inequality ~7!#. Fractional errors in absolute cali-
bration are D2dyl , 0.02 for all etalons.#

A wavelength can therefore be measured abso-
lutely with an etalon only if it is already known with
488 APPLIED OPTICS y Vol. 38, No. 12 y 20 April 1999
an error of less than one half of its FSR ~5 l y2d! of
the measuring etalon. Each etalon refines the wave-
length from its less accurately known value li to a
value known with a precision FSR~Dεyε! ' FSRyfi-

essey20 of the etalon employed. This improvement
ver the standard resolution of an etalon comes from
etermining the centroid of the etalon fringe. One
an therefore measure a wavelength with high accu-
acy by balancing the choice of the length of an etalon
i.e., the size of its FSR! with the required ~Dli!max.

li as measured by a commonly available laboratory
monochromator is not sufficiently accurate to permit
the determination of a wavelength’s order m for an
talon that is long enough for accuracy of 1028.

Therefore we first improve the wavelength measured
by a monochromator to acceptable accuracy by using
two intermediate etalons. In our system the wave-
length measured by the monochromator and the
three etalons of the wavemeter ~at 600 nm! are accu-
ate to within 60.1 nm, 60.02 nm, 60.2 pm, and

60.009 pm, respectively.

3. Apparent Thickness of the Etalon

Bennett20 described how the etalon fringe pattern
changes for reflection from metal films with phase
shift angles less than p:

~N 1 1 1 ε!l 5 2n0 d 1 ~p 2 b!lyp. (8)

The angle d 5 p 2 b decreases approximately lin-
arly as the wavelength increases, providing a nearly
onstant correction to the etalon separation. As a
esult, the method of exact fractions can be used to
etermine a set of integers that gives a constant ~m 1
!l product. The dispersion in ldyp causes a small

change in the apparent separation of the etalon
plates over a broad wavelength range.

A calculation of the expected phase shift was first
published by Bauer.21 He wrote Maxwell’s equa-
tions for electric and magnetic fields in the different
media illustrated in Fig. 1. Using the boundary con-
dition that tangential components of E and H are
ontinuous at the interface between two media, one
an solve for the intensity Iexit of the exiting beam as

a function of the actual physical separation d be-
tween the etalon plates. The phase shift d is then
calculated:
d 5 2tan21
(HFr21y2 expS4ptk1

l D 2 r1y2 expS24ptk1

l DGsin~q1 2 q2!J 2 F~R21y2 2 R1y2!sinSc1 2 c2 1
4ptn1

l DG)
(HFr21y2 expS4ptk1

l D 1 r1y2 expS24ptk1

l DGcos~q1 2 q2!J 2 F~R21y2 1 R1y2!cosSc1 2 c2 1
4ptn1

l DG)
,

(9)
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where

q1 ; tan21S 2k1

n1 1 1D , q2 ; tan21S 2k1

n1 2 1D , (10)

c1 ; tan21S 2k1

n1 1 n2
D , c2 ; tan21S 2k1

n1 2 n2
D , (11)

r ;
~n1 2 n2!

2 1 k1
2

~n1 1 n2!
2 1 k1

2 , (12)

R ;
~n1 2 1!2 1 k1

2

~n1 1 1!2 1 k1
2 , (13)

n1 and k1 are the real and imaginary parts, respec-
tively, of the index for the metal film, and n2 is the
index for the plates.

Heavens22 reviewed several methods for solving
this boundary problem. One powerful approach is
the matrix method for multiple-beam interference.23

Using the matrix approach, Heavens evaluated the
complex reflectivity of the metal film @Eq. @4~140!# of

ef. 19#. Bennett published as Eq. ~5! of Ref. 20 an
xplicit expression derived from Heavens’s Eq.
4~140!# for the phase angle of the reflected wave.
his complex expression appears to be quite different

rom Bauer’s solution, written above. With modern
rograms for algebra, such as MATHEMATICA,24 it is

straightforward to compare these expressions. Us-
ing the complex math capability of MATHEMATICA, one
can also determine the phase angle directly from Eq.
@4~140!# of Heavens’s book.

A simpler and more direct approach to calculating
the phase shift is to write the interface and propaga-
tion matrices directly with MATHEMATICA. For the
vacuum–metal and metal–quartz interfaces we have
the equations

Ĩ01 5
1

t01
F1 r01

r01 1 G , Ĩ12 5
1

t12
F1 r12

r12 1 G , (14)

where the transmission and reflection coefficients
have the respective forms

tij 5
2~ni 2 iki!

~ni 2 iki! 1 ~nj 2 ikj!
, (15)

rij 5
~ni 2 iki! 2 ~nj 2 ikj!

~ni 2 iki! 1 ~nj 2 ikj!
.

Propagation within the metal film uses the matrix

L̃12 5

Hexp@i2p~n1 2 ik1!tyl# 0
0 exp@2i2p~n1 2 ik1!tyl#J .

(16)

The matrix that describes forward and backward
propagation though the multilayer stack can then be
written directly as a product of the individual matri-
ces:

S̃02 5 Ĩ01 ^ L̃12 ^ Ĩ12. (17)

The complex reflectivity from the film is given by the
ratio of elements of this matrix:

R02 5 S21yS11. (18)

The phase shift of the reflected ray is obtained simply
in MATHEMATICA by the function

b 5 Arg~R02!. (19)

MATHEMATICA retains the results as algebraic expres-
sions similar to those of Bauer and Bennett. We
simply evaluated as a functions of wavelength the
phase shift from each of the four expressions for a
silver film. Surprisingly, given the opportunity for a
typographical error in such complicated expressions,
we obtained identical results from all four. The re-
sults for a silver film with thickness t 5 43.5 nm are
hown in Fig. 2.

A. Complex Refractive Index of Silver

To calculate the change in phase shift with wave-
length one must know the real and the imaginary
parts of the refractive indices of the materials as a
function of wavelength. The difficulty in measuring
the dielectric properties of thin metal films was thor-
oughly reviewed by Heavens.25 For thin films of sil-
ver with thickness less than 20 nm the phase shift
and reflectivity differ dramatically from theory,
which uses refractive indices measured from bulk
silver. In addition, the phase shift and reflectivity
vary rapidly over this range of thickness. This vari-
ation of the reflectivity from theory is a function of
film growth time, which has been shown to influence
the grain size of the silver films. For etalons with
reflectivity greater than 90% the film has a thickness
sufficient to allow it to behave as a bulk film, and the

Fig. 2. Comparison of calculated thickness of the metal coatings
~solid curve! with that measured by Bennett.20 For the wave-
length range from 450 to 550 nm the curves are parallel but dis-
placed by ;18 nm; for wavelengths greater than 550 the curves
diverge.
20 April 1999 y Vol. 38, No. 12 y APPLIED OPTICS 2489
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Table 1. Wavelength Dependence of Materials in the Form C 1 C 3 X 1 . . . 1 C 3 X a

2

refractive index of the bulk metal accurately predicts
the reflectivity.

Silver data were taken from the Handbook of Op-
ical Constants of Solids,26 in which the data over the

spectral range 360–2000 nm were taken from mea-
surements by Winsemius et al.27 The imaginary
part of the index of refraction k could be fitted with a
third-order polynomial with parameters given in Ta-
ble 1. The fit is accurate to 0.2% for wavelengths
from 390 to 1500 nm. The real index n had a more
complicated wavelength dependence and was fitted
with an eighth-order polynomial, again with the pa-
rameters given in Table 1. The function fits the data
within 65% throughout the wavelength range, the
error caused by scatter in the data.

B. Comparison with Experiment

Bennett20 measured the absolute phase shift b for
eflectivity of vapor-phase-grown aluminum and sil-
er films. For films of silver of 43.5-nm thickness
he reported measurements of b as a function of
avelength from 450 to 600 nm. The calculated
hase shifts as described above have a similar change
n phase with wavelength, but the theoretical phase
hifts are uniformly 5° larger than the measure-
ents. Bennett stated that uniformity in film thick-
ess was essential for accurate measurement of the
bsolute phase shift. She determined that thick-
ess variations were less than 0.5 nm for her silver
lms, with a similar error in known thickness. We
ound that a change from 44 to 54 nm in thickness t
f the metal film in the model caused a change in
hase shift of less than 1° over the full bandwidth
rom 400 to 900 nm. Inasmuch as etalons are insen-
itive to the fixed absolute phase shift of the film, only
he change in apparent thickness with wavelength is
mportant to their calibration. We converted the
hase shift to the change in plate separation ldyp for
oth Bennett’s data and the theory, and these are
ompared in Fig. 2. The uniform 5° increase in an-
le is reflected in the 15-nm shift in the theoretical
hickness curve relative to the measurements that is
hown in the figure. The curves are of nearly con-
tant separation for 440–530 nm, but for longer
avelengths the data increase in thickness while the

Coefficient Real n, Silver

C0 24.74527069 3 10
C1 5.81882525 3 1021

C2 23.04231878 3 1022

C3 8.96226071 3 1026

C4 21.64467958 3 1028

C5 1.95503169 3 10211

C6 21.50878872 3 10214

C7 7.3045856 3 10218

C8 22.01666449 3 10221

C9 2.42280158 3 10225

R 0.9977

aData for fused silica were taken from Ref. 28.
490 APPLIED OPTICS y Vol. 38, No. 12 y 20 April 1999
odel continues to decrease. Lichten16 numerically
evaluated Eq. ~5! of Bennett’s paper and, in contrast
to our comparison for silver, he obtained good agree-
ment with her experimental data for aluminum thin
films. For silver, the refractive-index data of Win-
semius et al.27 were measured for bulk metal rather
than for evaporated films; beyond this difference we
can offer no explanation for the disagreement be-
tween Bennett’s data and theory.

Given the disagreement between Bennett’s data
and the theory, we believed that we could not rely on
theory in calibrating the dispersion in apparent
thickness for our etalons. We did, however, calcu-
late it for a comparison with our calibration data.
The manufacturer measured 92% reflectivity for our
etalon plates at 550 nm. We calculated the reflec-
tivity as a function of thickness at 550 nm and deter-
mined that our silver coatings would theoretically
have a thickness of 50 nm. The change in apparent
thickness was then calculated and compared with
that measured in the etalon calibrations.

4. Wavemeter Design

A. Optics and Electronics

The design for the wavemeter, shown schematically
in Fig. 3, uses three etalons, E1, E2, and E3, with
increasing separation between their plates of 0.01,
0.25, and 5.0 cm, respectively. Evaporated films of
silver form the reflecting surfaces of the etalon plates.
~The etalons were purchased from IC Optical, Ltd.,
London.! The plates are polished to ly100; hence
the etalon optical finesse of '25 is limited by the
reflectivity of the metal coatings. The plates of the
etalons are in optical contact with Zerodur spacers.
The thermal expansion coefficient of Zerodur is '5 3
1028y°C. To further reduce thermal drift we mount
the etalons in a temperature-stabilized chamber.
The temperature inside the chamber is stable to
within 60.02 °C. To maintain vacuum between the
etalon plates we evacuate the chamber with liquid-
nitrogen-cooled molecular sieves. Light whose
wavelength is to be measured is sent to the waveme-
ter through input guiding apertures A1 and A2.
50y50 beam splitter BS1 divides the incoming beam:

0 1 9 9

Imaginary n, Silver Real n, Fused Silica

2.6040170 2.71861360
1.38779003 3 1022 21.47281462
6.4616631 3 1026 7.63154011 3 1025

2.03531367 3 1029 22.24769812 3 1027

– 4.10725912 3 10210

– 24.81798763 3 10213

– 3.63045964 3 10216

– 21.69774619 3 10219

– 4.4816455 3 10223

– 25.10083916 3 10227

0.9999 0.9997
2

2
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One beam is directed to the thickest etalon ~E3! and
he other is further divided by another 50y50 beam

splitter ~BS2!. These beams are directed to the
edium-spaced etalon ~E2! and the thin etalon ~E1!.

Cylindrical lenses CL1 and CL2 before the etalons
provide horizontal wedges of light. Interference
fringes produced by the thin and the medium etalons,
respectively, are collected by achromatic lenses L1
and L2. Telescope T collects the fringes from the
thickest etalon. The focal lengths of the lenses and
their locations are adjusted such that the resultant
circular fringes fall on horizontally linear diode ar-
rays D1–D3 ~EG&G Reticon Model 1024g!, which are
mounted upon adjustable vertical positioners. The
diode heights are 432 mm, so only a chord though the
ing pattern is recorded. A computer program is
sed to read the diameters of the measured rings
ontinuously; adjusting an array vertically can bring
he chord into coincidence with the diameter of the
ings. The magnification of the optics and the num-
er ~1024! of diode elements were chosen such that
hree rings could be observed from the etalon and still
pproximately eight diode elements per fringe could
e illuminated. This setup permits reasonable de-
ermination of the shape of the fringe so the centroid
osition of the fringe can be measured to a precision
etter than the diode spacing.
A computer controls the readout of the diode arrays

hrough a CAMAC interface. A four-channel, 10-bit
ransient digitizer ~LeCroy Model 8210! processes the

video signal from each diode array, digitizing all the
video signals simultaneously. The diode arrays can
then be clocked in parallel by use of the clock output of
this digitizer. Digitized data are stored in a memory
module ~LeCroy Model 8800A! with a capacity of 8096
ata points per channel. The data is read out through
he memory control circuitry on the digitizer. The
iode arrays are controlled by sample-and-hold video
ircuits provided by Reticon. Each digitizer sample

Fig. 3. Schematic diagram of the wavemeter. All the imaging
lenses after the etalons are achromats. M’s, mirrors; L’s, lenses,
other abbreviations are defined in text.
hen corresponds to the charge from a single diode-
lement. The diode arrays and the transient ana-
yzer are operated continuously. The video clock
ransitions are counted with a latching scaler ~LeCroy
odel 8590!. At the end of each diode array scan ~a

rame! a pulse from the diode arrays is used to clear
he scaler. When the laser fires, a trigger is provided
o the wave-form digitizer that begins storing the video
ignal; at the same time, the trigger latches the scaler,
hus recording the address within a camera frame that
s being read when the laser fires. All diodes with
ddresses ~i.e., positions within the image! earlier than
hen the laser fires will be dark and are not stored.
ll diodes with addresses after the laser fires will have
een illuminated and will be stored at the beginning of
he output of the transient analyzer. The illuminated
iodes with addresses before the laser trigger will be
ead out in the next video frame and stored at the end
f the analyzer array. Then the data read from the
nalyzer will have their left and right sides exchanged
bout the address of the laser trigger. The diode ar-
ays can be read at dwell times as short as 2 ms per
iode element; hence it takes a minimum of 2 ms to
tore 1024 values from four diode arrays ~an additional
rray can be used with a small spectrometer!. When
easuring cw lasers one can change the sensitivity of

he instrument by altering the dwell time. The com-
uter ~Digital Model PDP11y73! uses a crate controller
Kinetic System Model 3912! to read and control the
odules. The same crate controller and computer

re also used to control the lasers and digitize signal
etectors for laser spectroscopy experiments.

B. Computation Procedure

The computation is done with a large program that
reads the Reticon diode arrays, displays the fringes
on a scope, measures the etalon ring positions, and
then uses these data to compute the wavelength to be
displayed on the computer terminal. The entire
computation, which includes data acquisition and
subsequent data analysis, takes less than 100 ms; the
wavelength computation is completed within the in-
terpulse period of a pulsed laser operating at a rep-
etition rate of 10 Hz.

The first step in the data acquisition is the reading
of the raw data. Then, for a complete picture of the
exposed image, the early channels read from the sec-
ond frame must be shifted relative to the late chan-
nels read from the first frame. The image is spliced
at the channel read from the latching scaler. An
assembly language subroutine reads the arrays from
the digitizer and the channel number from the scaler
and then reconstructs the correct 1024-channel im-
age from parts of the two Reticon frames. The read-
ing time per array is '1.5 ms. Thus the total time to
read three diode arrays is '4.5 ms. This process
annot be substantially sped up with a faster com-
uter because of the 1.0-ms bus cycle time for the
AMAC. For faster readout, the CAMAC would
ave to be abandoned and separate digitizers and
rocessors for analyzing each array employed.
Once the raw data ring pattern has been con-
20 April 1999 y Vol. 38, No. 12 y APPLIED OPTICS 2491
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structed, a second assembly language subroutine lo-
cates the fringes and calculates the centroid of each
fringe. The magnification of the optics and the res-
olution of the diode arrays were chosen such that
several fringes can be observed and still have several
pixels distributed over the width of each peak. Thus
one can calculate the centroid of the peak with a
precision that is a fraction of the pixel width and
compute the wavelength with an error that is less
than the optical resolution of the etalon. Values of
centroids are the data on which rest of the computa-
tion is based. Thus a total of 1024 data pointsyeta-
lon are reduced to the number of centroids. This
reduction of data increases the speed of the compu-
tation.

Once the peaks have been located and their cen-
troids have been determined, the next step is to co-
ordinate those pairs of peaks that constitute an
interference ring. To understand the coordinating
procedure we define the past known value of the com-
mon center ~Fig. 4! of the ring system as the historic
center ~Hcent!. It provides the beginning of the pro-
cess for coordination of the peaks. The peaks are
numbered from left to right. The peak numbers on
the immediate left–right of Hcent are denoted Cleft–
Cright. Two innermost rings are said to be found if

CC0 2 CC1 , DIFFMAX, (20)

where

CC0 5 @Centroid~Cleft! 1 Centroid~Cright!#y2,

CC1 5 @Centroid~Cleft 2 1! 1 Centroid~Cright 1 1!#y2,

(21)

and DIFFMAX is the maximum permitted difference
of the centers of two rings. The exact value of this
maximum permitted difference is based on the accu-
racy with which we can measure the centroids. In
our system DIFFMAX is set to 2 pixels. Note that if
a fringe of a ring is missing because it is not properly
illuminated or because its centroid is shifted by noise,
the program will obtain a fringe on that side from the
next outer ring. The center from this ring will then
be different from the center from the other ring. The
program is designed to recover from this failure by
trying all possible coordinations of peaks to obtain as
many rings with common centers as possible. The
program also numbers each complete ring. A ring
with a missing peak is skipped in the sequence, but
the program can still measure the fraction order ε for
that set of rings.

Fig. 4. Positioning of the etalon fringes on the diode arrays.
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The established common center of ring system is

CC 5 ~CC0 1 CC1!y2. (22)

It is this common center that is used to coordinate
third and subsequent outer rings. It is also this cen-
ter that is preserved in a running average as Hcent
for later use.

The pth outer ring has been found if

CCp 2 CC , DIFFMAX, (23)

here

CCp 5 $Centroid@~Cleft 2 1! 2 ~p 2 1!#

1 Centroid@~Cright 1 1! 1 ~p 1 1!#%y2 (24)

and p 5 0, 1, 2, . . . , N.
The measured diameter of the pth ring in terms of

the number of pixels is given as

Dp 5 @Centroid~Cright 1 p! 2 Centroid~Cleft 2 p!#

(25)

An ~N 1 1!-point least-squares fit to Dp
2up deter-

mines @Eq. ~2!# the fractional fringe order ε. The
order of interference is then determined from Eq. ~5!,
and the improved value of the wavelength is given by
Eq. ~4!.

The above procedure is repeated three times, first
for the thin etalon ~E1!, then for the medium etalon
~E2!, and finally for the thickest etalon ~E3!; each
time the wavelength refined by the previous etalon
determines the order of the next.

5. Calibration

Any unknown wavelength can be determined from
the measured fractional fringe order, provided that
the etalon’s thickness is known with sufficient accu-
racy. An accurate determination of each etalon’s
thickness is required for calibration of the waveme-
ter. The calibration is done with reference wave-
lengths. A given laser line can be used as a
reference, provided that it has been measured with
an accuracy equal to or better than the accuracy of
the etalon to be calibrated; such measurements
should be done with respect to an internationally
accepted standard. Further, the reference laser
should be frequency stabilized with stability better
than the accuracy of the etalon to be calibrated. The
accuracy of our final etalon of the wavemeter is of the
order of 3 3 1028, but the wavelengths of commonly
available laboratory lasers are not known with such
high accuracy. This lack of precision presents a se-
rious problem that is further complicated by the ap-
parent change in thickness of the etalons with
changes in wavelength.
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A. Method of Exact Fractions

Most calibration methods are based on the method of
exact fractions.17 Using the etalon equation

~m 1 ε!l 5 2Hd 2 2Fs0 2
ds
dl

~l 2 l0!GJ (26)

and given two wavelengths, one precisely known ~l0!
and another approximately known ~l1!, which are
sufficiently close in wavelength that one can neglect
the change in separation of the plates with wave-
length dsydl, one obtains two equations:

~m0 1 ε0!l0 5 2d0 (27a)

~m1 1 ε1!l1 5 2d0, (27b)

where d0 5 d 2 2s0 is the calibrated plate separation
at l0. @In terms of the previous discussion of phase
shift, s0 @2~dsydl!#~l 2 l0! is a first-order Taylor
expansion of ldy2p.# Now there are three un-
knowns, the two integer orders and the separation.
One can use a bootstrap technique to measure l1
precisely.6 Solving Eqs. ~27! for the order and sub-
racting, one can obtain an estimate for the separa-
ion:

2d0 5
Dm 1 Dε

S 1
l0

2
1
l1
D , (28)

given an independent measurement for the change in
order Dm. One can substitute this separation into

q. ~27a! to calculate the order m0:

m0 5 Round~2d0yl0 2 ε0!. (29)

Finally, the wavelength l1 can be determined with
precision dεym0:

l1

l0
5

~m0 1 Dm 1 ε1!

~m0 1 ε0!
. (30)

If one uses a tunable laser, one can measure Dm by
scanning from the known wavelength l0 to l1 while
counting mode hops of the etalon. In addition to
having the wavelengths’ close enough that the
change in apparent separation can be neglected, one
must estimate l1 to a precision of 1y~4 m0!. For the
thin etalon, measurements with a monochromator
are sufficient. For the etalons with greater spacing,
the wavelengths can be estimated with the next-
thicker etalon. For calibrations over broad wave-
length ranges, this method is limited in accuracy by
the change in apparent separation with wavelength.

We had hoped to use theoretical calculations of the
change in etalon separation to improve the calibra-
tion. Given the disagreement between theory and
experiment for the phase shift, this was not possible.
The change in thickness would have to be measured
directly with a series of known calibration sources
spread over the visible spectrum. Because all our
etalon plates were coated at the same time, we
planned to measure the change in thickness of the
thinnest etalon where the change would have the
greatest effect. This would require references with
less precision than the wider-spaced etalons.

Inasmuch as most of the reference sources were
fixed in wavelength, we could not measure Dm by
ndependent means. We then used a variation of the

ethod of exact fractions. First we used the manu-
acturer’s specified separation d to estimate the or-

der, using Eq. ~29! at the primary reference l0 ~mapp
; 269 for the thin etalon!. Then, for all integer or-

ers mapp 1 ~6i! over a range corresponding to twice
the manufacturer’s specified error in separation
~250 , m , 400 for the thin etalon!, we calculated the
hicknesses at l0, using Eq. ~27a!. For each of these

~2i 1 1! trial thicknesses,

2di
~trial! 5 $@m1

~app! 1 ~6i!# 1 ε1%l1, i 5 0, 1, 2, 3, . . . ,

(31)

we calculated an order for each reference wavelength:

mk 5 F2ti
~trial!

lk
2 εkG . (32)

The different values of mk will in general be different
from an integer, but at the correct value for m0 all mk
will be close to an integer. Choosing m0 as the cor-
rect one, we round all the corresponding orders mk at
the reference wavelengths and calculate the corre-
sponding separation from Eq. ~27b!. This process is
rapidly done with a spreadsheet program.

B. Raman Method

In Raman-induced Kerr-effect spectroscopy29 and
other similar four-wave mixing experiments the line
frequency ~nR! of a Raman line of a molecule, the
pump frequency ~npump!, and probe frequency ~nprobe!
at resonance are connected by the equation

nR 5 unpump 2 nprobeu. (33)

If nR1
and nR2

denote the line positions of two Raman
lines and nprobe

~1! and nprobe
~2! are their respective

resonance probe frequencies, then for a fixed-
frequency pump and a tunable probe

nprobe
~1! 2 nprobe

~2! 5 nR2
2 nR1

. (34)

If ε1 is the fractional fringe order of nprobe
~1! and ε2

that of nprobe
~2! in the etalon to be calibrated, there are

N complete FSR’s of the etalon within the frequency
span nprobe

~12! 5 @nprobe
~1! 2 nprobe

~2!#:

~1 2 ε1!FSR 1 N~FSR! 1 ε2~FSR! 5 ~nR2
2 nR1

!. (35)

The FSR of the etalon to be calibrated is then given by

FSR 5
~nR2

2 nR1
!

~ε2 2 ε1! 1 ~N 1 1!
. (36)

This suggests a calibration method: Select two ~or
more, if necessary! narrow Raman lines with known
frequencies that are separated by several FSR’s of the
20 April 1999 y Vol. 38, No. 12 y APPLIED OPTICS 2493
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Table 2. Reference Lines Used for Calibration

2

etalon to be calibrated and that occur within the tun-
ing range of the probe laser. Tune the probe laser to
the first Raman line, and measure the fractional
fringe order. Then, while observing the fringes on
an oscilloscope, tune in small ~less than one FSR!
steps toward the second Raman line. Count the
number of times that the fringe pattern shows an
intense peak at the center of the observed fringes,
corresponding to ε 5 0. The total number of com-
plete FSR’s between the two lines is then given by
N 5 n 2 1. Finally, measure the fractional fringe
order at the frequency of the second Raman line.
The FSR and hence the calibrated thickness of the
etalon are then calculated from Eq. ~36!. Because N
is exact, the only uncertainties in the calculation are
the uncertainty in the measurement of fractional
fringe orders and the uncertainty in the Raman fre-
quencies.

C. Calibration Sources

An intracavity, iodine-stabilized helium–neon laser
operating at 633 nm is an excellent standard of wave-
length.30 This laser was originally designed by Lay-
r.31 In this laser the accuracy of laser lines, locked

on hyperfine transitions of iodine, is a few parts in
1010. For the purpose of calibration of this waveme-
ter, we duplicated Layer’s design in our laboratory
and locked the laser on to the i hyperfine component
f the iodine ~127I2! absorption line. The absolute

wavelength of this line is 632 991.398 6 0.003 pm.32

Another calibration line was obtained from a semi-
conductor diode laser stabilized to the hyperfine tran-
sition @6P3y2

2~F 5 3! 4 6S1y2
2~F 5 3!# of atomic

cesium, whose wavelength was measured with an
accuracy of few parts in 108 with respect to an iodine-
stabilized laser.33,34 The rubidium lines were mea-
sured with a Coherent 899 Ti:sapphire laser and
Doppler-free saturation spectroscopy. The fre-
quency of these lines has been measured within an
accuracy of 3 3 1029.35

Some additional, but less accurately known, cali-
bration wavelengths were obtained from uranium
emission spectra in a hollow-cathode discharge lamp.
Because uranium is a heavy element and the Doppler
broadening for a given temperature varies inversely
as the square root of the atomic weight, these lines
are narrow. There are several lines36,37 distributed
throughout the wavelength range '385–'909 nm.
These lines are known within an accuracy of 1027,

hich is sufficient for all but the thickest etalons.
s a pulsed dye laser is tuned, uranium resonances in

he discharge are observed by the optical galvanic
ffect.38,39

For calibration of the thin etalon, several lines of
an argon-ion laser and the line of a green helium–
neon laser were used. These lines are known to an
accuracy of 60.02 nm.40 We were concerned that
differences in magnetic fields for plasma confinement
and in gas pressures in our lasers might shift the
wavelengths for these sources. Once the etalon with
2.5-mm spacing was calibrated, we could measure the
494 APPLIED OPTICS y Vol. 38, No. 12 y 20 April 1999
wavelengths for our particular laser to a precision of
5 3 1027.

A set of more-precise references was generated by
Raman shifting of a frequency-doubled, narrow band
~650-MHz! YAG laser in CO2 at 1 amagat, permit-
ting us to measure two Stokes and four anti-Stokes
lines from the 1388-cm21 Raman resonance. This
resonance has a width less than 0.04 cm21 at 2 ama-
gats.41 The centroid of this resonance was mea-
sured by Sussmann et al.42 as

nR 5 1388.177~5! 2 0.71~10! 3 1022P, (37)

with nR in inverse centimeters and P in amagats.
he second Stokes line is near our primary reference

red iodine-stabilized helium–neon laser!. In fact
he first and second Stokes lines bracket the wave-
ength of the helium–neon laser and are sufficiently
lose in wavelength that the change in thickness can
e ignored and the Raman shift measured directly.
e measured 1388.223 cm21; the difference com-

pared with Eq. ~37! may result from laser-induced
hifts. We used the measured shift to calibrate the
avelengths of the anti-Stokes transitions. The use
f these references is described in Subsection 5.D.
he reference sources and wavelengths are listed in
able 2.

D. Results

1. Etalon 1
The thin etalon was calibrated by the modified
method of exact fractions as described in Subsection
5.A. A section of the iteration table for etalon 1 on

Reference Line
Wavelength

~nm! This Work

Fourth anti-Stokes of YAG 410.8300~4! –
Third anti-Stokes of YAG 435.6778~3! –
Second anti-Stokes of YAG 463.7247~3! –
Ar1 476 476.622~6!a 476.614~2!
Ar1 488 488.122~6!a 488.118~2!
First anti-Stokes of YAG 495.6311~3! –
Ar1 497 496.645~4!a 496.6412~1!
Ar1 514 514.676~4!a 514.6877~1!
He–Ne green 543.5159~5! 543.5213~1!
Ne 572.094~4!b 572.0935~2!
First Stokes of YAG 574.7177~2! 574.6745~1!
U 576.20331~5!b –
Second Stokes of YAG 624.5463~2! –
He–Ne red 632.991398~3!c –
Rb D2 dyf 780.2462916~8!d –
Rb D2 byf 780.246450~2!d –
Rb D1 c9 794.981364~2!d –
Rb D1 d9 794.974964~3!d –
Cs 852.33512~4!e –

aRef. 40.
bRef. 36.
cRefs. 30 and 31.
dRef. 35.
eRefs. 33 and 34.
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Table 3. Section of Iteration Table for Etalon 1
integer order m0 is reproduced in Table 3. Note that
at m0 5 331 the orders are within 60.02 of an integer
for all other reference wavelengths. This was the
only order for 250 , m0 , 400 for which this coinci-
dence occurs. Assigning m0 5 331 and rounding the
orders to the nearest integer, we can calculate the
thickness at each wavelength. These thicknesses
are plotted in Fig. 5 as a function of wavelength. A
least-squares fit to the thickness measurements
yields the solid curve in Fig. 5. The scatter observed
in the data is consistent with the reproducibility in
measuring ε, Dε ; 0.005. The error bars shown are
a combination of the uncertainty in the wavelengths
shown in Table 2 and the fractional error in measur-
ing the order Dεym. For this etalon the latter is the
dominant error.

The change in apparent thickness shown in Fig. 5
for our thin etalon is 100 nm over the wavelength
range of our reference sources. This is nearly an
order of magnitude greater than that expected the-
oretically. We believe that this large change is due
to optical aberrations generated by the large angles
for the outer rings in the case of the thin etalon. At
the cesium wavelength the fourth ring has a half-

m0 He–Ne 2d0 Cs YAG Second

632.991395 852.33512 624.4928
: : :

326 2065944.6 242.33854 329.9295
327 2072274.6 243.081195 330.9431
328 2078604.5 243.823851 331.9567
329 2084934.4 244.566507 332.9702
330 2091264.3 245.309162 333.9838
331 2097594.2 246.051818 334.9974
332 2103924.1 246.794473 336.0110
333 2110254.1 247.537129 337.0246
334 2116584.0 248.279784 338.0382
335 2122913.9 249.02244 339.0517
336 2129243.8 249.765096 340.0653

: : : :

Fig. 5. Calibrated plate separation for etalon 1 as a function of
wavelength. The change in plate separation greatly exceeds that
expected from the metal coatings and is likely caused by chromatic
aberration in the optics resulting from the large angles subtended
by the rings for the small ~100-mm! plate separation.
angle of 9°. We had noticed that in the case of the
thin etalon the analysis for fractional fringe ε de-
pended on the number of rings used in the fit.
Equation ~2! results from a small-angle approxima-
tion.17,18 The program was corrected to account for
the angle of the ring in the fit, but the large angles
could cause other aberrations, including spherical
aberration of the imaging lens, change in effective
focal depth because of the thick etalon plates, and
the variation of metal coating thickness with angle.
We assume that the apparent change in thickness
observed in Fig. 5 stems from a combination of all
these effects. Using the calibrated change in
thickness, we determined the precision of the thin
etalon of 3 3 1025, which is sufficient to permit us
to determine unambiguously the order for etalon 2,
the 2.5-mm spaced etalon.

2. Etalon 2
We used a similar procedure to analyze etalon 2,
spaced by 2.5 mm. Because of the larger order for
this etalon, more precision is required for the refer-
ence wavelengths. We found that measurements of
the order were reproducible over long term for the
best wavelength references to better than Dε 5 0.002.

he procedure of iterating the integer order for the
eference wavelength l0 was done with only the ce-

sium wavelength, the Raman wavelengths, and the
rubidium wavelengths.

We put the Raman wavelengths on an absolute
scale by measuring the line produced by second
Stokes scattering of the YAG laser. This wave-
length lies sufficiently close to the primary reference
wavelength that the change in apparent thickness
can be neglected. Then, for each trial order for the
primary reference wavelength, we calculated the or-
der of the second Stokes line from

mk 5 RoundF2di
~trial!

lk
2 εkG , (38)

es U YAG First Stokes He–Ne Green

576.20331 574.6745 543.5159
: : :

358.488592 358.481367 379.153492
359.587148 359.582821 380.318116
360.685704 360.684275 381.482739
361.784259 361.785729 382.647363
362.882815 362.887183 383.811986
363.981371 363.988637 384.97661
365.079926 365.090091 386.141233
366.178482 366.191545 387.305857
367.277037 367.292999 388.47048
368.375593 368.394453 389.635104
369.474149 369.495907 390.799727

: : :
Stok

6

47
31
14
97
8
63
46
3
13
96
79
20 April 1999 y Vol. 38, No. 12 y APPLIED OPTICS 2495
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using its estimated wavelength. The wavelength
was then calculated from Eq. ~27b!. All other Ra-
man sources were related to the second Stokes line by

1
ln

5
1

l2nd Stokes
1 nnR, (39)

where nR is given by Eq. ~37!. In iteration over or-
ders ranging from 7600 to 7950, orders of reference
wavelengths were near integers for m0 5
7757, 7871, 7831, 7953, 7968. For each of these
possible orders the thickness for each reference wave-
length was calculated and plotted. The order m0 5
7757 gave significantly smaller residual values of ε at
each wavelength. It should be pointed out that be-
fore making the rubidium measurements we ob-
tained a calibration m0 5 7928, which gave residual
values for ε that were smaller than those when the
rubidium measurements were included, but this cal-
ibration gave significant errors at the rubidium wave-
lengths. This confirms the necessity for making
accurate calibrations over a broad spectral range. A
plot of the difference in thickness relative to the
iodine-stabilized helium–neon laser wavelength for
m0 5 7757 is shown in Fig. 6 and compared with
heory. Again each error bar is a combination of the
ncertainty in measuring the order and the error in
ur knowledge of the reference wavelength. In ad-
ition to producing a plot closer to theory, the sum of
he absolute differences of the reference orders from
ntegers ~a measure of the error! was a factor of 3
maller for m0 5 7757 than for all other possible

orders.
The data of Fig. 6 show systematic differences from

values expected from theory. These differences cor-
respond to systematic errors of the order of 60.01 in
the measurement of ε. These errors in absolute cal-
ibration at different wavelengths are a factor of 4
larger than the long-term ~more than a year! repro-

Fig. 6. Calibrated change in plate separation relative to the sep-
aration at the red helium–neon wavelength for the etalon 2, spaced
by 2.5 mm. Error bars, uncertainties in the fractional fringe order
and known wavelengths of the reference sources; solid curve, ex-
pected variation from theory. The reproducibility of the measure-
ments is consistent with the error bars; hence the disagreement
with theory represents a systematic error that is due to the method
used for measuring the fringe or to optical abberations.
496 APPLIED OPTICS y Vol. 38, No. 12 y 20 April 1999
ducibility for the measured ε at each specific wave-
length. If a specific measurement is repeated
months apart we observe variations of less than
60.002 at each wavelength; yet the difference in cal-
ibrated thickness differs from theory by a reproduc-
ible scatter corresponding to dε ; 60.01.

In comparing the measured change in thickness
with that calculated, we find that, unlike in the data
of Bennett, the apparent plate separation continues
to decrease for wavelengths longer than 550 nm. In
fact, the data of Fig. 6 decrease faster than the model
for the longer wavelengths. The experimental data
and the model differ by nearly 20 nm at the larger
wavelength.

We speculate that the error in measured thickness
change is due either to the protective coatings over
the silver or to a systematic error that results from
using the centroid to measure the fringe location
rather than fitting the known fringe shape to the
data. Such a fit would greatly slow the speed of the
wavemeter unless a moment method of determining
the most probable position of the fringe could be used.

3. Etalon 3
Using the reference wavelengths in the red and the
IR and the method of exact fractions, we determined
a unique calibration, m0 5 157941 and 2d 5
9 975905 6 1 nm, at the helium–neon reference
avelength for etalon 3. The measured change in

hickness with wavelength then gave agreement with
he IR calibration wavelengths, with a decrease in
late separation of 65 nm relative to the thickness at
he helium–neon wavelength. This shift is smaller
han that observed for etalon 2 but confirms a sys-
ematic error in the measured phase shifts shown in
ig. 6 in that the thickness variations for the two
talons are different.
We had hoped to use the thickness calibration from

talon 2 to calibrate the thickness change for the
.0-cm-spaced etalon. Because all etalon plates
ere coated in the same evaporation run, we as-

umed that the phase shifts would be identical for all
he coatings as long as the thickness was uniform
ver the evaporation chamber. We had hoped to test
his assumption by comparing the change in thick-
ess for the two smaller-spaced etalons. Because we
ound that the thickness variations differ systemati-
ally among the three etalons, we determined that
he absolute calibrations are limited not by phase
hifts in the coatings but by other systematic errors.
s the calibrations are reproducible, we use the fit of
smooth function to interpolate between the calibra-

ions. Conservatively the accuracy of the instru-
ent at the ends of the wavelength range is 4 3 1028.

In the region from 550 to 700 nm the accuracy is 2 3
1028.

6. Conclusions

We have presented a computer-controlled pulsed
wavemeter that has a precision of 1 part in 108 and an
absolute accuracy of a few parts in 108. This
wavemeter is capable of computing the wavelength of
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each shot of the laser in real time at repetition fre-
quencies up to 10 Hz. Using modern computers and
parallel processing the data from each etalon with a
separate CPU can enhance the speed of computation
to repetition rates of 250 Hz.

The use of evacuated silver-coated etalons reduced
the temperature and wavelength dependence of the
refractive index between etalon plates and extended
the wavelength range of the wavemeter but intro-
duced a wavelength-dependent phase shift of the sil-
ver coating. Given the disagreement in change of
thickness that we found between the experiments of
Bennett20 and theory, aluminum may be a better
hoice for coatings. Because of the lower reflectivity
f aluminum films and the resultant smaller etalon
nesse, however, aluminum may not yield accuracy
reater than that given by the instrument reported
ere.
Often such wavemeters are built43 but cannot be

used for absolute wavelength measurement because
they are not calibrated. The calibration of our in-
strument would have been greatly simplified if we
could have used as a reference a cw, narrow-band dye
laser operating in the blue–green wavelength range
by measuring with a scanning cw wavemeter. As
many researchers may have similar circumstances,
we have described several calibration methods that
are usable with only pulsed dye lasers.

Although the development of such a high-accuracy
wavemeter required considerable effort, we find the
device to be a useful tool for monitoring the mode
structure, laser frequency, laser bandwidth, and fre-
quency jitters of both cw and pulsed lasers.

J. W. Keto thanks Wolfgang Demtröder for his hos-
pitality during a sabbatical where that author
learned construction details of an earlier version of
the current wavemeter. We are deeply indebted to
Howard Layer for his help in constructing a duplicate
of his iodine-stabilized helium–neon laser and for his
help in our obtaining an absorption cell of high-purity
iodine. This research was supported by the Robert
A. Welch Foundation and the Division of Chemical
Sciences, Office of Basic Energy Sciences, Office of
Energy Research, U.S. Department of Energy.
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