

The Chemistry of Mercury Oxidation

C. David Livengood Marshall H. Mendelsohn

Argonne National Laboratory **Bruce W. Lani**

National Energy Technology Laboratory

Presented at Mercury Control Technology R & D Program Review July 14-15, 2004 Pittsburgh, Pennsylvania

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

The Chemistry of Hg in Flue Gas is a Key Element in Control Processes

- Difficulty in understanding/predicting emissions indicated that a better understanding of Hg chemistry was needed.
- A critical review of published information established the state of existing knowledge and identified research needs.
- Advanced analytical techniques are being investigated for their application to challenging research problems.

The Critical Review Involved:

- A survey of mercury experts to help focus the review on the most important issues.
- Identification of chemical mechanisms for the homogeneous gas-phase chemistry of Hg⁰ with Cl₂ and HCI as the initial focus.
- A search of the literature back to 1907, assembling the most relevant documents publicly available, and critically reviewing over 300 pages of material.
- Development of a topical report (in preparation) and meeting presentations (A&WMA, 2004).

The Most Significant Literature is Relatively Recent

- The earliest relevant paper was published in 1949.
- Interest in lasers produced several papers in the 70s and 80s on mercury in excited states.
- Two significant early papers were found in '79 and '80.
- Renewed interest in the late 80s and early 90s produced several more important papers.
- Detailed mechanistic models began appearing in 2000.
- Recent work (up to March 2003) has produced new kinetic data and model revisions that incorporate more chemical species and effects of particulate matter.

Early Papers Gave Much Different Views of Reaction Kinetics

- Surface Catalyzed Reaction of Hg + Cl₂, A. K. Medhekar, M. Rokni, D. W. Trainor, and J. H. Jacob, Chem. Phys. Lett., 65 (3), 600-604 (1979): found a fast reaction for Hg⁰ with Cl₂, but attributed this to a surface-catalyzed reaction
- Detection of Mercury in Air in the Presence of Chlorine and Water Vapor, R. Menke and G. Wallis, Am. Ind. Hyg. Assoc. J., 41 (2), 120-124 (1980): found a slow reaction for Hg⁰ with Cl₂; rate constant calculated from the data in this paper is cited (directly or indirectly) in later atmospheric chemistry research papers

A Later Paper Confirmed a Slow Gas-Phase Reaction

- Reactions Between Mercury Vapor and Chlorine Gas at Occupational Exposure Levels, A. Skare and R. Johansson, Chemosphere, 24 (11), 1633-1644 (1992):
 - First independent laboratory data that agreed with results of Menke and Wallis (1980), finding a slow homogeneous gasphase reaction of Hg⁰ with Cl₂ at room temperature
 - Results showed that 40% of gaseous Hg⁰ disappeared after standing with gaseous Cl₂ for 24 hr in a Tedlar bag
 - This corresponds to a rate at least 10⁵ times slower than that found for the surface catalyzed reaction

Between 1998 and 2003, a Number of Hg⁰ Oxidation Mechanisms were Proposed:

- The 8-step Hg/CI oxidation sub-mechanism below first appeared in 2000 and has been widely accepted and used in later work as part of an overall homogeneous gas-phase mechanism:
 - 1. Hg⁰ + CI + M <----> HgCI + M
 - 2. Hg⁰ + Cl₂ <----> HgCl + Cl
 - 3. Hg⁰ + HCl <----> HgCl + H
 - 4. Hg⁰ + HOCl <----> HgCl + OH
 - 5. HgCl + Cl₂ <----> HgCl₂ + Cl
 - 6. HgCl + Cl + M <----> HgCl₂ + M
 - 7. HgCl + HCl <----> HgCl₂ + H
 - 8. HgCl + HOCl <----> HgCl₂ + OH

Gas-Solid Interactions were Recently Added to the Mechanism

- A Mechanism for Mercury Oxidation in Coal-Derived Exhausts, S. Niksa, N. Fujiwara, Y. Fujita, K. Tomura, H. Moritomi, T. Tuji, and S. Takasu, J. Air & Waste Manage. Assoc., 52, 894-901 (2002):
 - First model to include gas-solid interactions along with 102 homogeneous gas-phase reactions
 - Proposed a simple 3 step mechanism for gas-solid interactions:
 - a. StSA (s) + HCI ----> StCI (s) + H
 - b. StCl (s) + Cl ----> Cl₂ + StSA (s)
 - c. StCI(s) + Hg⁰ ----> StSA (s) + HgCl where StSA(s) denotes an unoccupied carbon site and StCI(s) denotes a chlorinated site

Issues and Recommendations

Homogeneous Reaction Mechanisms :

- Both Cl₂ and Cl appear to be vital species in a Hg⁰ oxidation mechanism. Can the concentrations of either of these be measured at various locations in a real-world flue-gas stream?
- Since HCI can react with O_2 to form CI_2 via a Deacon-type process, can the extent of this pathway either be estimated or measured?
- What effects do other flue-gas species have on a Hg⁰ oxidation mechanism?

• Heterogeneous Reaction Mechanisms:

- Because of the potential importance of gas/solid reactions in Hg⁰ oxidation, an assessment should be made of plausible gas/solid mechanisms.
- What influence does coal type, combustion conditions, and flue-gas composition have on particulate active sites?

Issues and Recommendations

• Reaction Kinetics:

- Recent, improved values of the rate constants for reactions of Hg⁰ with Cl₂ and Cl are available and should be used in future modeling studies.
- Do these new values have any substantial effects on the results of previous model calculations?
- Several workers consider the reaction of Hg⁰ with atomic-Cl to be the most important (i.e., rate determining) step of the 8-step model because reactions involving HgCl are assumed to be fast. However, the rate constant for the reaction of HgCl with either Cl₂ or Cl should be checked in the lab.

Techniques to Study Interactions of Hg with Solids Are Being Evaluated

- Initial objective is to identify physical/chemical associations for Hg on particles
- Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-Ray (EDX) analysis can image individual ash particles and chemically analyze small regions.
 - Detection limit of about 1000 ppm for most elements
 - Only elements in near-surface region detected
 - Areas of high local concentration are needed to find elements with average levels below 1000 ppm
 - Identification of "promising" regions or features for Hg is the current challenge

Initial Tests Did Not Find Hg on Fly Ash, but Did Find Cu Present at 1.9 ppm (avg.)

-4700 25.0kV 11.6mm x900 SE(U) 12/19/03 17:07

<u>Element</u>	Energy (keV)
С	0.28
0	0.53
Na	1.04
AI	1.49
Si	1.74
S	2.31
CI	2.62
К	3.31
Fe	6.40
Cu	8.04

Another Ash Particle from the Same Boiler Showed No Cu and Negligible S

2003121906.csv 3000 2500 1500 1000 500

Element	Energy (keV)
С	0.28
0	0.53
Mg	1.25
AI	1.49
Si	1.74
K	3.31
Fe	6.40

A New Technique Offers Sensitivities of 100 ppt or better

- Laser Post Ionized Secondary Neutral Mass Spectrometry
 - A beam of energetic Ar ions removes atoms from the surface being studied
 - Laser light ionizes the atoms, which are analyzed using time-of-flight mass spectroscopy
 - Spatial resolution is on the order of 10 µm

Initial Tests Indicated that a More Energetic Laser is Required

- A sample of Sn-Hg alloy containing 650 ppm Hg was tested
- Sn atoms were readily detected using a 7.90 eV laser, but Hg was not found
- The unusually high ionization energy of Hg may not have been reached by the laser
- Future work to be conducted at Argonne's Bunch Advanced Photon Source will employ a higher energy free-electron laser

Office of Fossil Energy U.S. Department of Energy

Two thermionic rf guns

Acknowledgments

- The authors wish to acknowledge the help and support provided by:
 - Scott Renninger, formerly of NETL, who encouraged and supported the initial portions of this work
 - Nestor Zaluzec and Russell Cook, Materials Science Division, Argonne National Laboratory, whose assistance was essential for the SEM and EDX portions of the work
 - Wallis Calaway, Materials Science Division, Argonne National Laboratory, whose interest and assistance are making the Laser Post Ionized Secondary Neutral Mass Spectroscopy studies possible
- Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by The University of Chicago under contract W-31-109-Eng-38.

