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Transition-metal-catalyzed couplings of organic electrophiles
with Grignard reagents (“Kumada reactions”) were among the first
cross-coupling processes that were discovered.1,2 Like other families
of cross-couplings, this versatile method for the synthesis of
carbon-carbon bonds has been applied primarily to reactions of
aryl and vinyl electrophiles.3 It is nevertheless noteworthy that the
earliest successes in cross-coupling alkyl electrophiles were Ku-
mada-type reactions with Grignard reagents.4-6 Despite that initial
progress, to date there have been no examples of enantioselectiVe
Kumada couplings of alkyl electrophiles.7-9 In this report, we begin
to address this challenge, establishing that a Ni/bis(oxazoline)
catalyst achieves asymmetric cross-couplings of R-bromoketones
with aryl Grignard reagents (eq 1).10,11

With respect to enantioselective cross-coupling reactions of alkyl
electrophiles, pybox ligands have proved to be useful for an array
of nickel-catalyzed Negishi reactions, whereas 1,2-diamine ligands
have found application in Hiyama and Suzuki reactions.8 Unfor-
tunately, none of the previously described methods achieves the
asymmetric Kumada coupling illustrated in entry 1 of Table 1 in
good ee and yield.

Although bis(oxazoline) ligands have been widely applied in
metal-catalyzed processes,12 to the best of our knowledge they
have not been employed in cross-coupling reactions of alkyl
electrophiles. We have determined that, in the presence of an
appropriate C2-symmetric bis(oxazoline), the desired Kumada
coupling proceeds both in good yield and with high enantiose-
lectivity (entry 1 of Table 1; NiCl2 · glyme and ligand 1 are
commercially available).

Several features of this asymmetric Kumada reaction are
noteworthy. First, the cross-coupling is stereoconvergent: both
enantiomers of the electrophile are converted efficiently into the
same enantiomer of the product.8 Second, the reaction occurs at
-60 °C, the lowest temperature that has been employed to date
for a cross-coupling of an alkyl electrophile (activated or unacti-
vated).13 Third, as a consequence of the low temperature, the
potentially labile R-arylketone product is not racemized under the
Brønsted-basic conditions.14

Exploiting a procedure developed by Knochel for the synthesis
of functionalized Grignard reagents,15 we have demonstrated
that a wide array of aryl Grignards can be employed in our
enantioselective Kumada cross-couplings (Table 1).16,17 The
method is compatible with a diverse spectrum of functional
groups, including esters, halides (no aryl-aryl coupling), nitriles,

ethers, and heteroaromatic rings (e.g., benzofurans and indoles).18

Regardless of the electron-withdrawing or electron-donating
nature of the substituent on the aromatic ring, consistently good
ee’s and yields are obtained.

A variety of R-bromoketones are suitable electrophilic partners
in this catalytic asymmetric Kumada cross-coupling process. In

Table 1. Asymmetric Kumada Reactions of R-Bromoketones:
Variation of the Nucleophilea

a All data are the average of two experiments. b Yield of purified
product.
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the case of aryl alkyl ketones (Table 2), the aromatic group can
be electron-rich or electron-poor, and it can bear a variety of
substitution patterns (entries 1-6). Furthermore, the coupling
proceeds smoothly with a heteroaromatic substituent (entry 7),
as well as with an array of functionalized alkyl groups (entries
9-11). The cross-coupling products can be derivatized with good
diastereoselectivity without racemization (eqs 2 and 3).19

When the same conditions are applied to asymmetric Kumada
reactions of dialkyl ketones, more modest enantioselectivities
are observed (for entry 1 of Table 3, 23% ee and 24% yield).
However, by modifying the structure of the bis(oxazoline) and
raising the reaction temperature, we have obtained promising

ee’s for a variety of reaction partners (Table 3). To the best of
our knowledge, with a single exception,20 there had been no
previous progress in such catalytic asymmetric cross-couplings
of dialkyl ketones.

Some preliminary observations may be useful in contemplating
the mechanism for this process. A kinetic study of the cross-
coupling of 2-bromo-1-phenylpropan-1-one with PhMgBr (entry 1
of Table 1) revealed that the rate law for the reaction is first order
in nickel, first order in PhMgBr, and zero order in the electrophile.21

In addition, the unreacted electrophile is essentially racemic
throughout the course of the reaction (<5% ee; no evidence for
kinetic resolution). Finally, the ee of the product correlates linearly
with the ee of the ligand (no nonlinear effect).

In summary, we have described the first asymmetric Kumada
reactions of alkyl electrophiles, specifically, couplings of racemic
R-bromoketones with aryl Grignard reagents. This adds to the
small but growing list of cross-couplings of alkyl electrophiles
that can be achieved with useful enantioselectivity. Several
features of this investigation are noteworthy. First, the couplings
proceed at remarkably low temperature (-40 or -60 °C), which
enables the asymmetric synthesis of racemization-prone R-arylke-
tones. Second, dialkyl ketones undergo enantioselective coupling

Table 2. Asymmetric Kumada Reactions of Aryl Alkyl Ketonesa

a All data are the average of two experiments. b Yield of purified
product.

Table 3. Asymmetric Kumada Reactions of Dialkyl Ketonesa

a All data are the average of two experiments. b Yield of purified
product.
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in good ee and yield. Third, readily available bis(oxazolines)
have been shown for the first time to be effective ligands for
cross-couplings of alkyl electrophiles, thereby opening the door
to exciting new opportunities in asymmetric catalysis.
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