Compounds Related to Pethidine-IV. New General Chemical Methods of Increasing the Analgesic Activity of Pethidine

Paul A. J. Janssen, Research Laboratories Dr. C. Janssen, Beerse
(Turnhout), Belgium
and

Nathan B. Eddy, National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Bethesda, Maryland

Introduction

A variety of chemical methods are available to increase the analgesic activity of pethidine (I). Replacement of the carbethoxy group $\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)$ by propionoxy $\left(\mathrm{OCOC}_{2} \mathrm{H}_{5}\right)$ is one of the known methods. ${ }^{2-6,8,11-13,16,18,20,23-25}$ Another one is the replacement of $\mathrm{N}-\mathrm{CH}_{3}$ by selected N -substituents such as aralkyl, ${ }^{2,4,5,17,18,22}$ propiophenone, ${ }^{8,10}$ large alkyl groups, ${ }^{21}$ morpholinoethyl, ${ }^{1,7,14}$ alkoxy- or phenoxyalkyl., ${ }^{6,15}$ The available evidence, on the other hand, seems to indicate that activity usually decreases when carbethoxy ($\mathrm{COOC}_{2} \mathrm{H}_{5}$) is replaced by carbomethoxy $\left(\mathrm{COOCH}_{3}\right)$, or when propionoxy $\left(\mathrm{OCOC}_{2} \mathrm{H}_{5}\right)$ is replaced by acetoxy $\left(\mathrm{OCOCH}_{3}\right) .{ }^{2,4,5,12,23,24,25}$ (Also unpublished results.)

The purpose of this study is to present new experimental evidence in this field and to arrive at certain tentative generalizations concerning the structure-activity problem of compounds (II) related to pethidine.

(I)

(II)
$R=\mathrm{COOCH}_{3}, \mathrm{COOC}_{2} \mathrm{H}_{5}$,
Table I. Analgesic activity of compounds related to pethidine.

10		$0 . \mathrm{COCH}_{3}$	$\begin{aligned} & \text { JA } \\ & \text { ED } \\ & \text { JA } \\ & \text { EL } \end{aligned}$	$\begin{aligned} & \mathrm{HCl}_{\mathrm{NH}_{2} \mathrm{SO}_{3} \mathrm{H}}^{\mathrm{HCl}_{3}} \\ & \mathrm{NH}_{2} \mathrm{SO}_{3} \mathrm{H} \end{aligned}$	R1147 N 7714 R 1147 W 14265/2	M M \mathbf{M} \mathbf{R} \mathbf{R}	$\begin{aligned} & 6 \cdot 9(6 \cdot 1-8 \cdot 1) \\ & 0 \cdot 53(0 \cdot 44-0 \cdot 63) \\ & 2 \cdot 4(2 \cdot 0-2 \cdot 8) \end{aligned}$	$\begin{aligned} & 12 \\ & 66 \\ & 60 \\ & 72 \end{aligned}$
11		O. $\mathrm{COC}_{2} \mathrm{H}_{5}$	$\begin{aligned} & \text { JA } \\ & \text { ED } \\ & \text { JA } \\ & \text { EL } \end{aligned}$	$\begin{aligned} & \mathrm{HCl} \\ & \mathrm{NH}_{2} \mathrm{SO}_{3} \mathrm{H} \\ & \mathrm{HCl}_{3} \\ & \mathrm{NH}_{2} \mathrm{SO}_{3} \mathrm{H} \end{aligned}$	R 1148 N 7740 R 1148 W 16492	\mathbf{M} \mathbf{M} \mathbf{R} \mathbf{R}	$\begin{aligned} & 3.2(2 \cdot 7-4 \cdot 0) \\ & 0.53(0 \cdot 46-0.60) \\ & 1 \cdot 3(1 \cdot 0-1 \cdot 7) \end{aligned}$	$\begin{array}{r} 25 \\ 66 \\ 110 \\ 69 \end{array}$
12		$\mathrm{COOC}_{2} \mathrm{H}_{5}$	$\begin{aligned} & \text { JA } \\ & \text { ED } \\ & \text { JA } \\ & \text { EL } \end{aligned}$	HCl	R 1368 N 7684 R 1368 W 13015	\mathbf{M} \mathbf{M} \mathbf{R} \mathbf{R} \mathbf{R}	$\begin{aligned} & 3 \cdot 6(2 \cdot 6 \cdot 4 \cdot 9) \\ & 1 \cdot 3(\cdot 2-1 \cdot 5) \\ & 7 \cdot 2(6 \cdot 4-8 \cdot 2) \end{aligned}$	$\begin{aligned} & 23 \\ & 27 \\ & 20 \\ & 18 \end{aligned}$
13		O. COCH_{3}	$\begin{aligned} & \text { JA } \\ & \text { ED } \\ & \text { JA } \\ & \text { EL } \end{aligned}$	HCl	R 1400 N 7697 R 1400 W 13775	M \mathbf{M} \mathbf{R} \mathbf{R}	$\begin{aligned} & 1 \cdot 3(0.99-1 \cdot 6) \\ & 0 \cdot 39(0.35-0.45) \\ & 0.54(0.43-0.64) \end{aligned}$	$\begin{array}{r} 62 \\ 90 \\ 265 \\ 142 \end{array}$
14	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$	$0 . \mathrm{COC}_{2} \mathrm{H}_{5}$	$\begin{aligned} & \text { JA } \\ & \text { ED } \\ & \text { JA } \\ & \text { EL } \end{aligned}$	$\begin{aligned} & \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{HCl} \\ & \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{HCl} \end{aligned}$	R 1396 N 7744 R 1396 W 16748	M \mathbf{M} \mathbf{R} \mathbf{R} \mathbf{R}	$\begin{aligned} & 0.50(0.44-0.57) \\ & 0.11(0.095-0.13) \\ & 0.25(0.20-0.27) \end{aligned}$ $020-20-102)$	$\begin{aligned} & 162 \\ & 318 \\ & 572 \\ & 637 \end{aligned}$
15		$\mathrm{COOC}_{2} \mathrm{H}_{5}$	$\begin{aligned} & \text { EDD } \\ & \text { EL } \end{aligned}$	HCl	$\begin{aligned} & \text { N } 7356 \\ & \text { W } 13181 \end{aligned}$	$\begin{aligned} & \mathbf{M} \\ & \mathbf{R} \end{aligned}$	22 (21-24)	$\begin{aligned} & 1 \cdot 6 \\ & 2 \cdot 8 \end{aligned}$
16		O. COCH_{3}	$\begin{aligned} & \text { ED } \\ & \text { EL } \end{aligned}$	HCl	$\begin{aligned} & \text { N } 7710 \\ & \text { W } 14113 \end{aligned}$	$\begin{aligned} & \mathbf{M} \\ & \mathbf{R} \end{aligned}$	1.1 (0.95-1.3)	$\begin{array}{r} .32 \\ 39 \end{array}$
17		O. $\mathrm{COCO}_{2} \mathrm{H}_{5}$	$\begin{aligned} & \text { ED } \\ & \text { EL } \end{aligned}$	HCl	$\begin{aligned} & \text { N } 7716 \\ & \text { W } 14306 \end{aligned}$	$\begin{aligned} & \mathbf{M} \\ & \mathbf{R} \end{aligned}$	$0 \cdot 65(0 \cdot 57-0.75)$	$\begin{array}{r} 54 \\ 108 \end{array}$

[^0]Table I. Analgesic activity of compounds related to pethidine-cont.

顽

	E					¢		
$\widehat{\sim}$	ज่ $\dot{0}$	¢	＊		$\bar{\square}$	$\dot{0} \dot{0}$		－
$\dot{\sim} \dot{\sim}$	$\dot{\sim}-1$	$\stackrel{\rightharpoonup}{i}$	$\dot{\infty}$	®	5	81.8	$=$	T
\bigcirc	$\bigcirc \dot{9} \dot{0}$	20	20.	\bigcirc	\％	－i $\dot{0}$	7	\because
엉	E－${ }_{0}$	12	120	$\underset{\sim}{\infty}$	\cdots	－ 0	18	$\stackrel{\sim}{0}$
$\pm \infty$	\bigcirc	\because	5		$\stackrel{1}{\sim}$	∞	${ }_{20}^{20}$	7
$\dot{\sim} \dot{\sim}$	$\therefore \dot{0} \dot{0}$	$\dot{\varphi}$	$\dot{\square} \dot{\sim}$	$\stackrel{\sim}{\infty}$	$\dot{\text { j }}$	$\dot{\circ} \dot{0} \dot{0}$	－10	$\dot{\infty}$
シュ	\＃\％～2	Σ	y	$E \Sigma$	Σ	シ玉	E	Σ

$\stackrel{90}{8}$		$\begin{gathered} \infty \\ \stackrel{\sim}{i n} \\ \hline \end{gathered}$	$\stackrel{\perp}{\infty}$		\％	会䨘曾	$\stackrel{\infty}{\circ}$
x^{2}		\sim	～	\％ 6.	2		\propto

烒	E	ت্ㅋ	$\underset{y}{\tilde{y}}$			Z	总	咢
$\stackrel{4}{4}$	出会岢	む	岂	要会	$\overleftrightarrow{\leftrightarrow}$	あ令岗	あ	$\overleftrightarrow{4}$
$\begin{aligned} & \text { in } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10 0^{3} 8 8 8	5 0 0 0 0	$\begin{aligned} & \mathbf{B}_{8}^{60} \\ & 0_{0}^{6} \\ & 8 \end{aligned}$		$\begin{aligned} & \Psi^{m} \\ & 0 \\ & 0 \\ & 8 \end{aligned}$		$\begin{gathered} \text { ®ٌ } \\ 88 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \underbrace{\prime N} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
－	¢	\％	\％	\cdots	$\stackrel{9}{9}$	$\%$	\pm	${ }_{\sim}^{20}$

a Laboratory：JA＝Janssen et al．$; \mathbf{E d}=\mathbf{E d d y} ; \mathbf{E L}=$ Elpern et al．\quad b Species：$M=$ Mice； $\mathbf{R}=$ Rats
© Serial number： $\mathbf{R}=$ Beerse serial number； $\mathbf{N}=\mathbf{N I H}$ serial number； $\mathbf{W}=$ WIN（Sterling Winthrop serial number）．
Table I. Analgesic activity of compounds related to pethidine.-cont.

Experimental

Compounds 1-5, 7-14, 18-39 (Table I) were synthesised in Beerse, ${ }^{9,10}$ compounds 2, 5-7, 9-17, 19-21 at the Sterling Winthrop Research Institute ${ }^{4,5}$ and compounds 9 and 31 in Bethesda. ${ }^{18}$ Details of the synthesis of the new compounds prepared in Beerse (22-25, 26, 32-39) will be published elsewhere.

All 39 compounds listed in Table I were tested for analgesic activity in mice, 15 of them both in Beerse and in Bethesda, 20 in Beerse only (JA) and 4 in Bethesda only (ED). Two previously described modifications to the 'hot plate method' were used. ${ }^{8-10,} 26-30$

Twenty-five of the 39 compounds of Table I were also tested for analgesic activity in rats, 10 of them both in Beerse and at the Sterling Winthrop Institute, 9 in Beerse only (JA) and the 6 others at the Sterling Winthrop Institute only (EL). In Beerse a previously described 'hot plate method' ${ }^{29}$ was used. The Sterling Winthrop results, recently published by Elpern et al., ${ }^{4,5}$ were obtained using a radiant heat method.

All compounds were injected subcutaneously. ED50 values and confidence limits ($P=0 \cdot 05$) are expressed in micromoles per kilogram ($\mu \mathrm{M} / \mathrm{kg}$) body weight, and potency ratios (PR) are expressed on an equimolar basis (pethidine $=1 \cdot 0$).

Results

A series of 8 compounds of structure II (Table I) were tested in the three laboratories using four different experimental methods. Ranking these potency ratios gives 4 rankings of 8 individuals (Ranking A) each or 8 rankings of 4 individuals (Ranking B) (Table II).

The coefficient of concordance W for the 4 rankings $\mathrm{A}(n=8$; $m=4$) is $0.94\left(X_{r}^{2}=26 \cdot 3 ; \gamma=7 ; P<0.01\right)$. The concordance of the ranking of PR as obtained in 4 different experimental conditions is highly significant.

Inspection of rankings B shows however the PR's in mice (Beerse) to be almost systematically lower (roughly $2 \frac{1}{2}$ times) than the three other sets of PR values, among which there is satisfactory agreement. The relatively high ED50 in mice (Beerse) of pethidine is responsible for this discrepancy.

Table II.

Compd. No.	PR				Ranking A				Ranking B			
	$\overbrace{\text { JA }}^{\text {m }}$	$\overbrace{\text { ED }}$	rats		mice		rats		mice		rats	EL
2	1	1	1	1	1	1	1	1	21	2 $\frac{1}{2}$	$2 \frac{1}{2}$	21 ${ }^{\frac{1}{2}}$
10	12	66	60	72	2	$4 \frac{1}{2}$	4	5	1	3	2	4
11	25	66	110	69	4	$4 \frac{1}{2}$	5	4	1	2	4	3
12	23	27	20	18	3	2	2	2	3	4	2	1
13	62	90	265	142	6	6	6	6	1	2	4	3
14	162	318	572	637	7	7	7	7	1	2	3	4
19	32	61	40	39	5	3	3	3	1	4	3	2
21	261	650	1100	785	8	8	8	8	1	2	4	3
									112	$21 \frac{1}{2}$	24. $\frac{1}{2}$	22 $\frac{1}{2}$

The following discussion will therefore be based on PR ratios recorded in Table I for pairs of compounds as determined using one technique only.
(1) Analgesic activity increases about 20-fold when carbethoxy in II $\left(R=\mathrm{COOC}_{2} \mathrm{H}_{5}\right)$ is replaced by propionoxy ($R=\mathrm{OCOC}_{2} \mathrm{H}_{5}$) regardless of the chemical structure of the substituent L.

This general conclusion is based on the analysis of 19 pairs of PR values on 8 pairs of compounds II ($\mathrm{R}=\mathrm{COOC}_{2} \mathrm{H}_{5}$ and O. $\mathrm{COC}_{2} \mathrm{H}_{5}$):

Species	Laboratory	$\begin{gathered} \mathrm{PR}\left(\mathrm{O} . \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right): \\ \operatorname{PR}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right) \end{gathered}$			No. of pairs
		average	\min.	max.	
mice	Beerse	$16 \cdot 1$	$6 \cdot 8$	33.8	7
	Bethesda	$18 \cdot 0$	$10 \cdot 7$	$25 \cdot 3$	4
rats	Beerse	$27 \cdot 4$	$26 \cdot 0$	$28 \cdot 6$	3
	S. Winthrop	$25 \cdot 0$	$4 \cdot 4$	$38 \cdot 6$	5
	Total	$20 \cdot 6$	$4 \cdot 4$	$38 \cdot 6$	19

The data suggest a somewhat larger influence of $\mathrm{COOC}_{2} \mathrm{H}_{5} \rightarrow$ $\mathrm{O} . \mathrm{COC}_{2} \mathrm{H}_{5}$ replacement on analgesic potency in rats than in mice.
(2) The propionoxy esters ($I I ; R=0 . \mathrm{COC}_{2} \mathrm{H}_{5}$) are about 3 times more active than the corresponding acetoxy esters (II; $R=\mathrm{OCOCH}_{3}$).

This general estimate is based on 18 available pairs of PR values for 7 compounds.

Species	Laboratory	$\begin{gathered} \mathrm{PR}\left(\mathrm{O} . \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right): \\ \mathrm{PR}\left(\mathrm{OCOCH}_{3}\right) \end{gathered}$			No. of pairs
		average	min.	max.	
mice	Beerse	$3 \cdot 3$	1.4	$7 \cdot 4$	5
	Bethesda	$1 \cdot 9$	1.0	$3 \cdot 5$	4
rats	Beerse	$4 \cdot 4$	1.8	$10 \cdot 8$	4
	S. Winthrop	$2 \cdot 7$	0.96	$4 \cdot 5$	5
	Total	$3 \cdot 1$	$0 \cdot 96$	$10 \cdot 8$	18

The highest ratios (7.4 and $10 \cdot 8$) are found for the $\mathrm{N}-\mathrm{CH}_{3}$ derivatives, the lowest (0.96 and 1.0) for the N -phenethyl compounds.
(3) The carbethoxy esters are about 4 times more active than the corresponding carbomethoxy esters.

This estimate is based on 8 available pairs of PR values on 7 substances.

Species	Laboratory	$\mathrm{PR}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right):$ PR $\left(\mathrm{COOCH}_{3}\right)$			No. of pairs
		average	min.	max.	
mice	Beerse	$3 \cdot 6$	$1 \cdot 1$	$5 \cdot 9$	7
rats	Beerse	$5 \cdot 4$	-	-	1
		$3 \cdot 8$			8

Changes in Substituted L in Compounds of Type II

(4) A phenylpropyl derivative is about 6 times as active as the corresponding phenethyl derivative.

The 11 available pairs of PR values for the 3 pairs of derivatives are as follows.

	Mice		Rats	
	Beerse	Bethesda	Beerse	S. Winthrop
COOC ${ }_{2} \mathrm{H}_{5}$	$23 / 2 \cdot 3=10 \cdot 0$	$27 / 2 \cdot 7=10 \cdot 0$	-	$18 / 2 \cdot 6=6 \cdot 9$
$0 . \mathrm{COCH}_{3}$	$62 / 12=5 \cdot 2$	$90 / 66=1 \cdot 4$	265/60 $=4 \cdot 4$	$142 / 72=2 \cdot 0$
O.CO. $\mathrm{C}_{2} \mathrm{H}_{5}$	$162 / 25=6.5$	$318 / 66=4 \cdot 8$	$572 / 110=5 \cdot 2$	$637 / 69=9 \cdot 2$
average	$7 \cdot 2$	$5 \cdot 4$	$4 \cdot 8$	$6 \cdot 0$
$\begin{gathered} 6 \cdot 0 \\ (\min .1 .4 ; \max , 10 \cdot 0) \end{gathered}$				

(5) A phenylpropyl derivative is about 7 times as active as the corresponding phenylbutyl derivatives.

This estimate is based on the following pairs of PR values.

	Mice Bethesda	Rats S. Winthrop
$\mathrm{COOC}_{2} \mathrm{H}_{5}$	$27 / 1 \cdot 6=16 \cdot 9$	$18 / 2 \cdot 8=6 \cdot 4$
O. COCH_{3}	$90 / 32=2 \cdot 8$	142/39 $=3 \cdot 6$
$\mathrm{O} . \mathrm{COC}_{2} \mathrm{H}_{5}$	$318 / 54=5.9$	$637 / 108=5 \cdot 9$
average	$8 \cdot 5$	$5 \cdot 3$
	$\begin{gathered} 6 \cdot 9 \\ (\min .2 \cdot 8 ; \max .16 \cdot 9) \end{gathered}$	

Corresponding phenethyl- and phenylbutyl derivatives therefore are about equiactive (the average estimate for 6 pairs of PR values is $1.4 ; \min .0 \cdot 64$ and max. $2 \cdot 1$).
(6) A phenylpropyl derivative is about 160 times as active as the corresponding N -benzyl derivative.

This estimate is based on the following pairs of PR values listed in Table I.

	Mice		Rats
	Beerse	Bethesda	S. Winthrop
$\mathrm{COOC}_{2} \mathrm{H}_{5}$	-	$27 / 0 \cdot 15=180$	$18 / 0 \cdot 32=56$
0.00. CH_{3}	-	$90 / 1 \cdot 0=90$	142/1.1 $=129$
O.CO. $\mathrm{C}_{2} \mathrm{H}_{5}$	162/1.5 $=108$	$318 / 3 \cdot 8=84$	$637 / 1 \cdot 4=455$

The total average ratio is 157 (min. 56 ; max. 455).
(7) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{2}\right] \sim 11 \times\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right]$

This estimate is based on only 4 pairs of PR values obtained in mice (Beerse).
$\left.\begin{array}{lcr}\mathrm{COOCH}_{3} & 5.4 /<0.84 & =>6.4 \\ \mathrm{COOC}_{2} \mathrm{H}_{5} & 32 / 0.47 & =6.8 \\ \mathrm{O}_{3} . \mathrm{CO}_{3} \mathrm{CH}_{3} & 82 / 9.8 & =8.4 \\ \mathrm{O} . \mathrm{CO}_{2} \mathrm{H}_{3} & 261 / 14 & =\end{array}\right\}$ average 11.3
(8) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{CH}_{2}\right] \sim 8 \times\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right]$

Only 3 pairs of PR values are available to estimate this ratio, all three obtained in Beerse.
$\left.\begin{array}{llr}\mathrm{COOCH}_{3} & \text { mice } & 34 / 13=2 \cdot 6 \\ \mathrm{COOC}_{2} \mathrm{H}_{5} & \text { mice } & 74 / 12=6.2 \\ \mathrm{COOC}_{2} \mathrm{H}_{5} & \text { rats } & 275 / 19=14.5\end{array}\right\}$ average 7.8
(9) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{CH}_{2}\right]>25 \times\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2}\right]$

The only pair of compounds available was tested only in mice (Beerse).

$$
\mathrm{COOC}_{2} \mathrm{H}_{5}: 74 /<0 \cdot 3=>24 \cdot 7
$$

(10) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}_{2} \mathrm{CH}_{2}\right] \sim 8 \times\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right]$

An estimate based on the following PR values for mice (Beerse).

$$
\left.\begin{array}{ll}
\mathrm{COOCH}_{3} & 19 / 3 \cdot 2=5 \cdot 9 \\
\mathrm{COOC}_{2} \mathrm{H}_{5} & 99 / 10=9 \cdot 9
\end{array}\right\} \text { average } 7 \cdot 9
$$

(11) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}_{2} \mathrm{CH}_{2}\right] \sim 50 \times\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}_{2}\right]$

One pair of compounds (31/33) was tested in mice in Beerse and in Bethesda.
$\left.\begin{array}{llr}\mathrm{COOC}_{2} \mathrm{H}_{5} & \text { Beerse } & 99 / 2 \cdot 6=38 \\ \mathrm{COOC}_{2} \mathrm{H}_{5} & \text { Bethesda } & 219 / 4 \cdot 1=54\end{array}\right\}$ average 46
(12) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOR}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(R^{\prime}=\mathrm{H}, \mathrm{COCH}_{3}\right.$ or $\left.\mathrm{COC}_{2} \mathrm{H}_{5}\right)$:

The influence of acylation and propionylation of the secondary alcohol function of aminopropanols of the type

was not studied in detail. Acylation seems to decrease activity to a small extent, whereas the propionoxy compounds are about as potent as the alcohols from which they are derived. This is not surprising in view of the fact that hydrolysis of the propionoxy group to the secondary alcohol proceeds very rapidly in aqueous solution (unpublished data).
(13) The influence of chemical modifications in L on analgesic potency of carbethoxy esters $\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)$ of type II is summarized in Table III.

Table III.

The most active derivatives, obviously, are of the type

the phenyl ring being connected with the nitrogen atom by a straight chain of 3 carbon atoms.

Conclusions

An attempt was made in the previous section to estimate in semi-quantitative terms the influence of systematic chemical modifications on analgesic potency in mice and in rats of pethidine derivatives of type II.

A combined summary of all these evaluations (PR for pethidine $=1 \cdot 0$) is as follows:
(1) average PR ratios among the 4 types of esters studied are O. $\mathrm{COC}_{2} \mathrm{H}_{5} \sim 3 \mathrm{O} . \mathrm{COCH}_{3} \sim 20 \mathrm{COOC}_{2} \mathrm{H}_{5} \sim 80 \mathrm{COOCH}_{3}$.
(2) the influence of substituent L on $P R$ is roughly summarized below; the arrows pointing towards increased activity.*

Further experimental work and collaborative testing is obviously required to gain better insight into these structure-activity relationships. Until completely reproducible methods have been developed, all efforts to correlate structure with activity in quantitative terms are bound to yield only rough approximations.

Summary. An attempt is made to estimate in semi-quantitative terms the influence of systematic chemical modifications on analgesic potency in mice and in rats of a series of compounds related to pethidine.
(Received 30 October, 1959)

References

${ }^{1}$ Andersen, R. J., Frearson, P. M. and Stern, E. S. J. chem. Soc. 4088 (1956)
${ }^{2}$ Beckett, A. H., Casy, A. F. and Kirk, G. J. med. pharm. Chem. 1, 37 (1959)
${ }^{3}$ Berger, L., Ziering, A. and Lee, J. J. org. Chem. 12, 904 (1947)
${ }^{4}$ Elpern, B., Gardner, L. N. and Grumbach, L. J. Amer. chem. Soc. 79, 1951 (1957)
${ }^{5}$ Elpern, B., Wetterau, W., Carabateas, Ph. and Grumbach, L. J. Amer. chem. Soc. 80, 4916 (1958)
${ }^{6}$ Frearson, P. M. and Stern, E. S. J. chem. Soc. 3062, 3065 (1958)
${ }^{7}$ Green, A. F. and Ward, N. B. Brit. J. Pharmacol. 11, 32 (1956)
8 Janssen, P. A. J. and Jageneau, A. H. J. Pharm. Lond., 9, 381 (1957)
${ }^{9}$ Janssen, P. A. J., Jageneau, A. H., van Proosdij-Hartzema, E. G. and de Jongh, D. K. Acta physiol. Pharm. neerl. 7, 373 (1958)
${ }^{10}$ Janssen, P. A. J., Jageneau, A., Demoen, P., van de Westeringh, C., Raeymaekers, A., Wouters, M., Sanczuk, St., Hermans, B. and Loomans, J. J. med. pharm. Chem. 1, 105 (1959)
${ }^{11}$ Jensen, K. A., Lundquist, F., Rekling, E. and Wolffibrandt, C. G. Dansk Tiddskr. Farm. 17, 173 (1943)
${ }^{12}$ Lee, J., Ziering, A., Heineman, S. D. and Berger, L. J. org. Chem. 12, 885 (1947)
${ }^{13}$ Lee, J., Benson, W. M. and Foldes, F. F. Can. Anaes. Soc. J. 3, 363 (1956)
${ }^{14}$ Millar, R. A. and Stephenson, R. P. Brit. J. Pharmacol. 11, 27 (1956)
${ }^{15}$ Morren, H. and Strubbe, H. Indust. chim. belge 22, 795 (1957)
${ }^{16}$ Nazarov, I. N. et al. Klin. Med. 30, 60 (1952)
${ }^{17}$ Orahovats, P. D., Lehman, E. G. and Chapin, E. W. J. Pharmacol. 119, 26 (1957)
${ }_{18}$ Perrine, Th. D. and Eddy, N. B. J. org. Chem. 21, 125 (1956)
${ }^{19}$ Randall, L. O. anđ Lehmann, G. J. Pharmacol. 93, 314 (1948)
${ }^{20}$ Randall, L. O., Selitto, J. J. and Valdes, J. Arch. int. Pharmacodyn. 113, 233 (1957)
${ }^{21}$ Sterling Drug Inc. (Elpern, B.) U.S. 2.901.487 (1959)
22 Weijlard, J., Orahovats, P. D., Sullivan, A. P. Jr., Purdue, G., Heath, F. K. and Pfister, K. J. Amer. chem. Soc. '78, 2343 (1956)
${ }^{23}$ Ziering, A., Berger, L., Heineman, S. D. and Lee, J. J. org. Chem. 12, 894 (1947)
${ }^{24}$ Ziering, A. and Lee, J. J. org. Chem. 12, 911 (1947)
${ }^{25}$ Ziering, A., Motchane, A. and Lee, J. J. org. Chem. 22, 1521 (1957)
${ }^{26}$ Eddy, N. B., Touchberry, C. F. and Lieberman, J. E. J. Pharmacol. 98, 121 (1950)
27 Eddy, N. B. and Leimbach, D. J. Pharmacol. 107, 385 (1953)
${ }^{28}$ Janssen, P. A. J. and Jageneau, A. H. Experientia 12, 293 (1956)
${ }^{29}$ Janssen, P. A. J. and Jagenaeu, A. H. J. Pharm. Lond. 10, 14 (1958)
${ }^{30}$ Leimbach, D. J. and Eddy, N. B. J. Pharmacol. 110, 135 (1954)

[^0]:

