2,3-Dihydrofurans in the synthesis of heterocyclic compounds

M-G A Shvekhgeimer

Contents

I. Introduction
II. Cycloaddition reactions 139
III. Recyclisation reactions 157
IV. Substitution of hydrogen atoms in 2,3-dihydrofurans 159
$\begin{array}{ll}\text { V. Addition to the double bond in 2,3-dihydrofurans } & 160\end{array}$

Abstract

Published data on the synthesis of heterocyclic compounds based on 2,3-dihydrofuran and its derivatives are surveyed, described systematically, and analysed for the first time. The bibliography includes 206 references.

I. Introduction

2,3-Dihydrofuran and its derivatives are representatives of cyclic vinyl ethers (ethers of enols). They are highly reactive and readily undergo various chemical transformations. Vast information on the chemistry of 2,3-dihydrofuran and its derivatives is available; however, no review papers on this topic have been published so far. Only two monographs ${ }^{1,2}$ contain some data concerning the chemistry of compounds of the 2,3-dihydrofuran series including a few examples of chemical transformations of 2,3-dihydrofurans.

2,3-Dihydrofuran and its derivatives incorporate a reactive double bond and, hence, they readily enter into various addition reactions. Among them, cycloaddition and addition of azoles or azines are especially interesting. Compounds obtained in these reactions, the molecules of which incorporate tetrahydrofuryl groups and residues of pyrimidine derivatives or derivatives of other nitrogen-containing heterocyclic systems, exhibit a broad spectrum of biological activity. Some of them have been found to be effective antitumour preparations.

Since 2,3-dihydrofurans are cyclic vinyl ethers, they readily undergo recyclisation reactions and are thus converted into other cyclic systems. It is also noteworthy that hydrogen atoms in 2,3dihydrofurans are capable of being substituted by various fragments under mild conditions.

The data surveyed in our review are classified according to the types of reaction into which 2,3-dihydrofuran and its derivatives enter. In Section II, $[2+1]-,[2+2]-$, $[3+2]$-, $[4+2]$ - and some other cycloaddition reactions involving compounds of the 2,3dihydrofuran series are considered successively. Section III is devoted to the transformations of 2,3-dihydrofurans according to recyclisation reaction routes. The reactions involving substitution of hydrogen atoms in the molecules of 2,3-dihydrofuran and

[^0]Received 10 January 1996
Uspekhi Khimii 66 (2) 151-178 (1997); translated by Z P Bobkova
its derivatives are discussed in Section IV. Section V includes the available data on the addition of various reagents to the double bond in 2,3-dihydrofurans.

II. Cycloaddition reactions

1. [2+1]-Cycloaddition

In the studies on the interaction of carbenes with 2,3-dihydrofuran and its derivatives two main methods are used for the generation of these highly reactive species (from gem-polyhalo-derivatives and from diazo compounds).

The reaction of 2,3-dihydrofuran $\mathbf{1}$ with ethyl trichloroacetate in the presence of sodium methoxide gives 6,6 -dichloro-2-oxabicyclo[3.1.0]hexane 2a, which is converted into 2,3-dichloro-5,6-dihydro- 2 H -pyran 3 on heating to $60^{\circ} \mathrm{C}$ (yield 90%). ${ }^{3}$

The reaction of the compound $\mathbf{1}$ with bromoform, carried out in tert-butyl alcohol in the presence of potassium tert-butoxide at $20^{\circ} \mathrm{C}$, afforded, instead of the expected 6,6-dibromo-2-oxabicyclo[3.1.0]hexane, the product of its isomerisation and interaction with the solvent, namely, 3-bromo-2-tert-butoxy-5,6-dihydro- 2 H pyran 4 (yield 21%). ${ }^{3}$

The reaction of 2,3-dihydrofuran 1 with trihalomethanes in the presence of aqueous sodium hydroxide and benzyltriethylammonium chloride (BTEAC) (the Rodionov catalyst) has also been carried out. ${ }^{4}$

In the case where dichlorofluoromethane was used, in addition to the cyclopropane derivative $\mathbf{2 b}$, di(3-fluoro-5,6-dihydro$2 H$-pyran-2-yl) ether 5 arising from a rearrangement product similar to $\mathbf{3}$ was isolated in 40% yield.

X	Yield (\%)
Cl	$71 \mathbf{(2 a)}$
F	$30(\mathbf{2 b})+40(\mathbf{5})$

6,6-Dibromo-2-oxabicyclo[3.1.0]hexane 6, formed upon treatment of 2,3-dihydrofuran 1 and carbon tetrabromide with methyllithium under an inert atmosphere, reacts with styrene to give a mixture of isomers of the cyclobuta[b]pyran derivative 7 (yield $24 \%) .{ }^{5}$

A mixture of exo-6-bromo-endo-6-fluoro-2-oxabicyclo[3.1.0]hexane $\mathbf{8}$ (yield 25%) and the ether 5 (yield 35%) was obtained by the reaction of 2,3-dihydrofuran with dibromofluoromethane in the presence of sodium hydroxide and BTEAC. ${ }^{5}$

The bromofluoro-derivative $\mathbf{8}$ reacts with styrene or α-methylstyrene in the presence of methyllithium to give a mixture of exoand endo-isomers $\mathbf{9 a}, \mathbf{b}$ (yield 54%), whereas the reaction of $\mathbf{8}$ with dienes $\mathbf{1 0}$ under the same conditions leads to a mixture of exo- and endo-isomers 11a,b (yield $57 \%-80 \%$) and compound $\mathbf{1 2} .^{5}$

Christl and Braun ${ }^{5}$ have proposed a scheme for the formation of the bicyclic systems 9 and 11 (using compounds 9 as an example) via the intermediate formation of cyclic 1,2-diene $\mathbf{1 3}$ and biradical 14.

Refluxing of ethyl diazoacetate with an excess of 2,3-dihydrofuran 1 or 5-methyl-2,3-dihydrofuran 15 in the presence of copper(II) sulfate has led to 2-oxabicyclo[3.1.0]hexane derivatives 16 (yields 76% and 79%, respectively). ${ }^{6}$

$\mathrm{R}=\mathrm{H}, \mathrm{Me}$.
The compound 1 reacts with methyl diazoacetate in the presence of a ruthenium catalyst even at $20^{\circ} \mathrm{C}$ to afford methyl 2-oxabicyclo[3.1.0]hexane-6-carboxylate 17 (yield $62 \%, E: Z$ isomer ratio $97: 3) .{ }^{7}$

By treatment with aqueous potassium hydroxide in the presence of a crown ether, chloro(methoxy)methyl p-tolyl sulfone $\mathbf{1 8}$ has been converted into carbene 19 , which was introduced in situ into the reaction with 2,3-dihydrofuran $\mathbf{1}$; endo-6-methoxy-exo-6-(tolyl-p-sulfonyl)-2-oxabicyclo[3.1.0]hexane 20 was thus synthesised in 48% yield. ${ }^{8}$

Oxidation of the enol ether 1 with dimethyldioxirane 21 at room temperature leading to 2,6-dioxabicyclo[3.1.0]hexane $\mathbf{2 2}$ can also be regarded formally as $[2+1]$-cycloaddition. ${ }^{9}$

2. [2+2]-Cycloaddition

In 1973, Huisgen and Steiner ${ }^{10}$ studied the reaction of 2,3-dihydrofuran 1 with tetracyanoethene and determined its rate constant $\left(k_{2} \times 10^{3}=22.6\right.$ litre $\left.\mathrm{mol}^{-1} \mathrm{~s}^{-1}\right)$. They suggested that this reaction involves the intermediate formation of a biradical or a zwitterion.

Fries and Gollinck ${ }^{11}$ believe that the reaction of 5-methyl-2,3dihydrofuran 15 with tetracyanoethene at $-20^{\circ} \mathrm{C}$ affords the zwitterion 23, which is converted into the final adduct at $20^{\circ} \mathrm{C}$.

Photochemical reaction of the enol ether 1 with cyclopent-2enone results in the formation of three products of [2+2]-cycloaddition: exo-24 (head-to-tail), endo-25 (head-to-tail) and exo-26 (head to head), in 99% overall yield. The ratio of the isomers $\mathbf{2 4}$: $\mathbf{2 5}: \mathbf{2 6}=75: 3: 22 .{ }^{12}$

When a mixture of the enol ether $\mathbf{1}$ and diphenylacetylene is irradiated with the light of a low-pressure mercury lamp for 3 days, two compounds are formed: 6,7-diphenyl-2-oxabicy-clo[3.2.0]hept-6-ene 27 (yield 11\%) and compound $\mathbf{2 8}$ resulting from the addition of the adduct 27 to the second diphenylacetylene molecule (yield 5\%). ${ }^{13}$

By thermal condensation of dihydrofurans $\mathbf{1}$ or $\mathbf{1 5}$ with dimethyl acetylenedicarboxylate, one can obtain [2+2]-cycloaddition products $\mathbf{2 9}$, which are converted into 2,3 -dihydrooxepine derivatives $\mathbf{3 0}$ on prolonged keeping at $200{ }^{\circ} \mathrm{C} .{ }^{14}$

1 or $\mathbf{1 5}+$

R	Catalyst	Solvent	$T /{ }^{\circ} \mathrm{C}$	Time h	Yield (\%)	
				$\mathbf{2 9}$		$\mathbf{3 0}$
H	$\operatorname{Pr}_{2}^{\mathrm{i}} \mathrm{NEt}$	PhMe	110	1	39	-
Me	$\operatorname{Pr}_{2}^{i} \mathrm{NEt}$	PhMe	60	1	41	-
Me	$\operatorname{Pr}_{2}^{\mathrm{i}} \mathrm{NEt}$	DMF	60	0.5	85	-
Me	$\operatorname{Pr}_{2}^{\mathrm{i}} \mathrm{NEt}$	DMSO	60	0.5	95	-
Me	-	PhMe	200	12	-	85

In the opinion of Fries and Gollinck, ${ }^{15}$ the reaction of enol ether $\mathbf{1 5}$ with dimethyl acetylenedicarboxylate is reversible and occurs via the formation of the intermediate bipolar ion 31.

Treatment of dibromomethylenecyclobutane with butyllithium affords 1-lithio-2-bromocyclopentene, which eliminates lithium bromide under the reaction conditions being thus converted into cyclopentyne, which enters in situ into a [2+2]-cycloaddition reaction with the enol ether $\mathbf{1}$; this leads to adduct $\mathbf{3 2}$ in 35% yield. ${ }^{16}$

The compound 1 reacts smoothly with diphenylketene at $0{ }^{\circ} \mathrm{C}$ to give 7,7-diphenyl-2-oxabicyclo[3.2.0]heptan-6-one 33 in a quantitative yield. ${ }^{17}$

A study of the rate of [2+2]-cycloaddition of diphenylketene to various enol ethers has shown that the compound $\mathbf{1}$ reacts with the ketene 350 times faster than 2,3-dihydropyran and 20 times faster than ethyl vinyl ether. ${ }^{18,19}$

The enol ether 1 readily reacts with phenylketene to give 7-phenyl-2-oxabicyclo[3.2.0]heptan-6-one in 80% yield; the latter is converted into the naphthofuran derivative 34 (yield 30%) on treatment with toluene- p-sulfonic acid. ${ }^{20}$

The reaction of the enol ether $\mathbf{1}$ with ketene $\mathbf{3 5}$ results in the formation of adduct 36 (yield 80%), treatment of which with toluene-p-sulfonic acid gives compound 37 in 70% yield. ${ }^{20}$

35

Various heterocyclic compounds have been synthesised based on 7-chloro-7-phenyl-2-oxabicyclo[3.2.0]heptan-6-one 38, which is formed in 75% yield upon $[2+2]$-cycloaddition of the enol ether 1 to chloro(phenyl)ketene 39. For example, a mixture of lactones 40 and 41 was obtained in 45% overall yield, and bicyclic lactone 42 was prepared as a mixture of cis- and trans-isomers in a ratio of 1:1.6.

42 (65\%)
The reactions of the enol ether 1 with ethoxy(triphenylsilyl)ketene 44 and its sulfur-containing analogue $\mathbf{4 5}$ follow essentially dissimilar pathways. Whereas the interaction of the enol ether 1 with the ketene $\mathbf{4 4}$ affords only the [2+2]-cycloaddition product 46 (yield 85%), ${ }^{22}$ in the case of the ketene $\mathbf{4 5}$, two compounds are formed: adduct 47 (yield 5\%) and 7-triphenylsilyl-2-oxa-8-thiabicyclo[3.3.0]octan-6-one 48 (yield 14\%). ${ }^{23}$

Ketene 49 arising upon treatment of succinimidoacetyl chloride with triethylamine enters into the [2+2]-cycloaddition reaction with the enol ether $\mathbf{1}$ leading to 7 -succinimido-2-oxabicyclo[3.2.0]heptan-6-one. ${ }^{24}$

Two compounds have been obtained in the reaction of 2,3-dihydrofuran 1 with ketene $\mathbf{5 0}$, prepared by treating phthalimidoacetyl chloride with triethylamine, namely, compound 51 resulting from $[2+2]$-cycloaddition (yield 40%) and 2 -oxabi-cyclo[3.2.0]hept-6-ene derivative $52(\mathrm{R}=\mathrm{H}$, yield 7\%) arising via acylation of the enol form of the adduct 51 with the initial acyl chloride. ${ }^{25}$

The reaction of 3-benzyloxycarbonyl-2,3-dihydrofuran with ketene 50 affords only compound $52\left(\mathrm{R}=\mathrm{COOCH}_{2} \mathrm{Ph}\right.$, yield $28 \%) .{ }^{25}$

As expected, the interaction of the enol ether 1 or 3-benzyloxy-carbonyl-2,3-dihydrofuran with dichloroacetyl chloride in the presence of triethylamine gives only the products of [2+2]-cycloaddition 53. ${ }^{26}$

R	$T /{ }^{\circ} \mathrm{C}$	Time $/ \mathrm{h}$	Yield (\%)
H	20	2.5	55
$\mathrm{COOCH}_{2} \mathrm{Ph}$	0	1	53

Ketene 54 generated from indane-1-carboxylic acid chloride by treating it with triethylamine under an inert atmosphere has been made to react in situ with the enol ether $\mathbf{1}$ according to the $[2+2]$-cycloaddition route; this has led to the spiro-compound $\mathbf{5 5}$.

Prolonged refluxing of the cycloaddition product 55 in chloroform in the presence of polyphosphoric acid results in its recyclisation yielding compound $56 .{ }^{27}$

55 (90\%)
56 (9\%)
When the enol ether $\mathbf{1}$ and benzonitrile are irradiated with light from a $70-\mathrm{W}$ low-pressure mercury lamp through a quartz filter under an inert atmosphere, $[2+2]$-cycloaddition reaction takes place giving rise to 1 -cyano-3-oxatricyclo[5.4.0.0 $0^{2.6}$]undeca-8,10-diene 57 in 20% yield. ${ }^{28}$

Gilbert et al. ${ }^{29}$ managed to accomplish [2+2]-cycloaddition of the enol ether 1 to naphthalene by irradiating a mixture of the initial compounds with the light from a $125-\mathrm{W}$ medium-pressure mercury lamp. Adducts $\mathbf{5 8}$ and $\mathbf{5 9}$ were obtained in this way in a low overall yield (5\%). ${ }^{29}$

When compound $\mathbf{6 0}$ is exposed to the radiation of a highpressure mercury lamp in the presence of compound $\mathbf{1}$ or $\mathbf{1 5}$, a mixture of two products $\mathbf{6 1}$ and $\mathbf{6 2}$ is obtained in each case. The researchers ${ }^{30}$ believe that the compounds $\mathbf{6 1}$ are formed via an intermediate endo- π-complex, whereas the compounds $\mathbf{6 2}$ arise via an exo- π-complex.

R	Yield (\%)	
	$\mathbf{6 1}$	$\mathbf{6 2}$
H	2	8
Me	14	77

When the enol ether $\mathbf{1}$ is made to react with methyl 2-pyrone-5carboxylate, two diastereomeric products of [2+2]-cycloaddition, 63a and 63b, are formed. ${ }^{31}$

At $50{ }^{\circ} \mathrm{C}$ and under a pressure of $12 \mathrm{kbar}, N$-tosylimine 64 undergoes $[2+2]$-cycloaddition to the enol ether $\mathbf{1}$, which affords adduct 65 as a mixture of cis, cis-, trans, cis-, and cis, trans-isomers in 80% overall yield; the individual cis, cis-isomer was isolated from this mixture in a yield of $35 \% .{ }^{32}$

The irradiation of 5-methyl-2,3-dihydrofuran 15 and acetaldehyde with the light from a medium-pressure mercury lamp results in the formation of compound $\mathbf{6 6}$ as a mixture of isomers 66 (yield 36%) and 66b (yield 27\%). ${ }^{33}$

Japanese investigators ${ }^{34}$ carried out [2+2]-cycloaddition of 2,3-dihydrofuran to benzaldehyde by irradiating the initial compounds with a high-pressure mercury lamp (450 W) under a nitrogen atmosphere at $0{ }^{\circ} \mathrm{C}$ for 6 h . They obtained a mixture of ($1 S R, 5 R S, 7 S R$)- and ($1 S R, 5 R S, 7 R S$)-7-phenyl-2,6-dioxabicyclo[3.2.0]heptanes ($\mathbf{6 7 a}, \mathbf{b}, \mathrm{Ar}=\mathrm{Ph}$).

When this reaction has been carried out on exposure to the radiation of a $150-\mathrm{W}$ high-pressure mercury lamp, the ratio of the isomers $67 a$ and $67 b$ has been found to depend on the nature of the aromatic aldehyde used. ${ }^{35,36}$

The rate and diastereoselectivity of the cycloaddition reaction involving the enol ether $\mathbf{1}$ were found to be higher than those in the case of cyclopentene. ${ }^{35}$

The diastereoselectivity of $[2+2]$ cycloaddition of the enol ether $\mathbf{1}$ to aromatic aldehydes is completely reversed when the electronic configuration of the excited triplet form [3 $\left(n \pi^{*}\right)-$ $\left.3\left(\pi \pi^{*}\right)\right]$ changes: in the case of 2,4,6-trimethylbenzaldehyde, the diastereomer 68a is formed predominantly, while in the case of aldehydes of the naphthalene series, the diastereomer $\mathbf{6 8 b}$ predominates. ${ }^{37}$

R	Yield (\%)	Ratio 68a: 68b
Me	76	$55: 45$
$2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	97	$2: 98$
α-Naphthyl	55	$98: 2$
β-Naphthyl	53	$98: 2$

2,6-Dioxabicyclo[3.2.0]heptane derivatives $\mathbf{6 9}$ have been synthesised by [2+2]-cycloaddition of the enol ether $\mathbf{1}$ or $\mathbf{1 5}$ to acetone occurring on exposure to radiation of a medium-pressure mercury lamp. ${ }^{33}$

$\mathrm{R}=\mathrm{H}(95 \%), \mathrm{Me}(30 \%)$.
69
A similar reaction involving hexafluoroacetone affords adduct 70. It has been found that the reaction temperature and the nature of the solvent exert a substantial influence on the selectivity of the process, on the degree of conversion, and on the yield of the adduct 70. ${ }^{38}$

A. Temperature dependence of the selectivity and the yield of $\mathbf{7 0}$.

$T /{ }^{\circ} \mathrm{C}$	Yield (\%)	Selectivity (\%)	Conversion of $\mathbf{1}(\%)$ (in heptane)
-5	39	39	100
-10	45	46	99
-15	56	75	74
-20	57	81	71
$-62(6 \mathrm{~h})$	62	62	100

B. Solvent dependence of the selectivity and the yield of $\mathbf{7 0}$.

Solvent	Yield (\%)	Selectivity (\%)	Conversion of $\mathbf{1}(\%)$
$\mathrm{Et}_{2} \mathrm{O}$	24	70	34
CHCl_{3}	27	27	100
PhMe	50	51	98
Heptane	57	81	71

The irradiation of a mixture of the enol ether 1 and 1,3,3-trimethyl-1,2-dihydronaphthalene-2-thione 71 with an RPR lamp $(\lambda=350 \mathrm{~nm})$ has led to two compounds: [2+2]-cycloaddition product 72 and compound 73 resulting from the interaction of one molecule of the enol ether 1 with two molecules of the initial naphthalene derivative 71. ${ }^{39}$

The formation of the compound 73 was explained ${ }^{39}$ in terms of a scheme involving the generation of biradicals 74 and 75.

4,5-Dimethyl-2,3-dihydrofuran has been photooxidised by irradiation with a filtered light $(\lambda=500-595 \mathrm{~nm})$ of a $150-\mathrm{W}$ lamp under an oxygen atmosphere in the presence of tetraphenylporphin or Bengal Rose. Among other products, 1,5-dimethyl-2,6,7-trioxabicyclo[3.2.0]heptane 76, which can formally be regarded as resulting from the [2+2]-cycloaddition of oxygen to the double bond, is formed in 48% yield.

Cyclocondensation of the enol ether $\mathbf{1}$ with cephalosporin 77 in the presence of palladium acetate and ethyldiisopropylamine has led to compound $\mathbf{7 8}$, which was separated into two isomers 78a and 78b (overall yield 73\%, ratio of isomers $1.8: 1$). ${ }^{41}$

78a

78b
$\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4$.

3. [3+2]-Cycloaddition

Esters of 2-diazobut-3-enoic acid $\mathbf{7 9}$ decompose in the presence of various catalysts to give the corresponding carbenes; however, the primary products arising upon the addition of these carbenes to the double bond of 2,3-dihydrofuran 1 undergo a rearrangement affording regioisomers of 2-oxabicyclo[3.3.0]octene, which contain the ester group in the 6 -position ($\mathbf{8 0 a}$) or in the 8 -position $(\mathbf{8 0 b})^{42,43}$ and are formally the products of [$\left.2+3\right]$-cycloaddition of the diazo derivative $\mathbf{7 9}$ to dihydrofuran.

2,3-Dihydrofuran 1 reacts in a similar way with some other diazo compounds.

The influence of the reaction conditions on the yield of the product $\mathbf{8 1}$ resulting from the interaction of the enol ether $\mathbf{1}$ with 2-diazocyclohexane-1,3-dione in the presence of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ has been studied. ${ }^{44}$

When the reaction is carried out without a solvent with boiling $(2 \mathrm{~h})$ or at $25^{\circ} \mathrm{C}(4 \mathrm{~h})$, compound $\mathbf{8 1}$ is formed in 84% yield. The nature of the solvent used in this reaction $\left(25^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$ has a substantial influence on the yield of the compound $\mathbf{8 1}$.

Solvent	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$	THF	PhH	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	MeCN
Yield of $\mathbf{8 1}(\%)$	70	61	48	43	20

Thermal cyclocondensation of the enol ether $\mathbf{1}$ with diazo compounds $\mathbf{8 2}$ has given rise to furo[2.3-b]-2,3-dihydrobenzofuran derivatives $\mathbf{8 3}$ (yields $45 \%-56 \%$). ${ }^{45}$

X^{1}	X^{2}	X^{3}	X^{4}
H	Cl	H	Cl
OMe	Cl	H	Cl
Br	H	Br	H

The reaction of the enol ether $\mathbf{1}$ with carbamate $\mathbf{8 4}$, containing an allyl radical, in the presence of 2-methylpropane-2-thiol gave a mixture of exo- and endo-isomers of adducts $\mathbf{8 5}$ (in a ratio of $1: 3$) in 52% overall yield. ${ }^{46}$

Perfluorinated heterodiene 86 reacts with the enol ether $\mathbf{1}$ at $20^{\circ} \mathrm{C}$ to give the stable bipolar ion 87 in a yield of 48%. The latter undergoes $[3+2]$-cycloaddition to a further molecule of the enol ether 1 , which affords a bis-adduct, namely, 7,7,14,14-tetrakis-(trifluoromethyl)-3,10-dioxa-1,8-diazatetracyclo[6.6.0.0 ${ }^{2.6} 0^{9.13}$]tetradecane $\mathbf{8 8}$ (yield 17%). ${ }^{47}$

88
The $[3+2]$-cycloaddition of 2,3-dihydrofuran 1 to 1,4-di-chloro-1,4-bis(trifluoromethyl)-2,3-diazabuta-1,3-diene $\mathbf{8 9}$ is accompanied by a rearrangement of this dichloroazine and yields compound 90 resulting from the 1,3-dipolar cycloaddition of the arising nitrilimine $\mathrm{CF}_{3} \stackrel{+}{\mathrm{C}}=\mathrm{N}-\overline{\mathrm{N}} \mathrm{CCl}_{2} \mathrm{CF}_{3} .{ }^{48}$

Clarke et al. ${ }^{49}$ have suggested that the interaction of the compound 91 with 5-methyl-2,3-dihydrofuran 15 leads to the furanopyrrole derivative 92 (yield 35%). Apparently, this process also involves the intermediate formation of the corresponding nitrilimine.

The spiro-compounds $\mathbf{9 3}$ and $\mathbf{9 4}$, containing each two dihydrofuran fragments, are formed in the condensation of dihydrofuran derivatives 95 with acetoacetates or with 5,5-dime-thylcyclohexane-1,3-dione in the presence of manganese(III) acetate under an inert atmosphere. ${ }^{50}$

95

93
94

R^{1}	R^{2}	Yield $\mathbf{9 3}(\%)$
COOEt	Et	37
COOEt	$\mathrm{CH}_{2} \mathrm{Ph}$	40
$\mathrm{SO}_{2} \mathrm{Ph}$	Et	26

Enol ethers 1 or $\mathbf{1 5}$ react with acetoacetates or with pentane-2,4-dione under the same conditions to give compounds with a different structure - 1,5-dioxabicyclo[3.3.0]octane derivatives 96. ${ }^{50}$

Tricyclic compound 97 has been obtained in 40% yield by cyclocondensation of the enol ether 15 with 5,5-dimethylcyclo-hexane-1,3-dione. ${ }^{50}$

Kraus et al..51 showed that the cyclocondensation of the compound 1 with esters of oxoacids or with cyclic diketones can be carried out in the presence of silver carbonate in boiling acetonitrile under an inert atmosphere. For example, compounds 98 (yield 50%) and 99 (yield $60 \%-76 \%$) were prepared from the enol ether 1 and ethyl acetoacetate and cyclohexane-1,3-dione, respectively.

The yield of compound $\mathbf{1 0 0}$ resulting from the photochemical reaction (high-pressure mercury lamp) of 2,3-dihydrofuran $\mathbf{1}$ with 1,2-naphthoquinone depends markedly on the polarity of the solvent in which the process is conducted. In fact, in nonpolar benzene ($D=0.00$), the yield of the compound $\mathbf{1 0 0}$ is only 6%, whereas in acetonitrile ($D=3.37$), the yield reaches $58 \% .{ }^{52}$

When epoxide $\mathbf{1 0 1}$ is irradiated with a low-pressure mercury lamp ($60 \mathrm{~W}, \lambda=254 \mathrm{~nm}$) through a quartz filter under an inert atmosphere, it gives rise to carbonylylide 102, which enters into 1,3-dipolar cycloaddition to 2,3-dihydrofuran 1 to give adducts 103a,b as pairs of diastereomers (yields 21% and 5%, respectively). ${ }^{53}$

Reactions of [3+2]-cycloaddition of various 1,3-dipoles to 2,3-dihydrofurans have been studied fairly well. For example, 1,3dipolar cycloaddition of the enol ether 1 to nitrones 104 proceeds according to the 'head-to-head' type and yields a mixture of endoand exo-isomers 105a,b. ${ }^{54}$ The ratio of the isomers depends on the nature of the group R in the nitrone.

Cycloaddition of the enol ether $\mathbf{1}$ to pyrroline N-oxide occurs stereoselectively; the reaction products consist predominantly of the diastereomer 106a (yield 91%), only a small amount of the diastereomer 106b being formed (yield 3\%). ${ }^{55}$

The first study devoted to the 1,3-dipolar addition of N -oxides of aliphatic, aromatic, and heterocyclic carboxylic acid nitriles to 2,3-dihydrofuran was published in $1962 .{ }^{56}$ The nitrile N-oxides were generated by two methods: by treating hydroximoyl chlorides $\mathbf{1 0 7}$ with bases and by dehydration of primary nitro compounds through the action of phenyl isocyanate in the presence of triethylamine. Nitrile N-oxides were introduced in situ into the reaction with 2,3-dihydrofuran. The cycloaddition occurred according to the 'head-to-head' type and gave adducts $\mathbf{1 0 8}$.

The conditions under which the nitrile N-oxides were generated and the yields of the adducts $\mathbf{1 0 8}$ are presented in Table 1.

Some $3 a, 4,5,6 a$-Tetrahydrofuro $[2,3-d]$ isoxazoles 108 containing substituents in the 3 -position have been synthesised by the cycloaddition of the enol ether $\mathbf{1}$ to the N-oxides of aliphatic carbonitriles, prepared by treatment of hydroximic acid chlorides 107 with sodium carbonate in water $(a){ }^{57}$ or with triethylamine in ether $(b) .{ }^{58-61}$

R	Yield (\%)	Ref.
CN	25	57
COOEt	51	58,59
Me	-	59
Ph	-	60
$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	-	61

Harada et al. ${ }^{62}$ described another method for the generation of benzonitrile N-oxide, which involves successive treatment of phenylnitromethane with sodium methoxide and acetyl chloride, and proposed a mechanism for this process. The resulting N-oxide was introduced in situ into the cycloaddition reaction with 2,3dihydrofuran 1.

Table 1. Conditions of reactions of 2,3-dihydrofuran 1 with nitrile N-oxides and yields of adducts 108 .

Substrate	Reaction conditions	Yield of $\mathbf{1 0 8}$ (\%)
$\mathrm{PhC}(\mathrm{Cl})=\mathrm{NOH}$	$\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 25 \mathrm{~min}$	40
	$\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, 2{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$	65
	$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{OEt}$, $20^{\circ} \mathrm{C}, 40 \mathrm{~min}$	42
	$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{OEt}$, $20^{\circ} \mathrm{C}, 40 \mathrm{~min}$	59
$\mathrm{PhC}(\mathrm{O}) \mathrm{C}(\mathrm{Cl})=\mathrm{NOH}$	$\mathrm{Et}_{2} \mathrm{O}, \mathrm{EtOCH}_{2} \mathrm{CH}_{2} \mathrm{OEt}, \mathrm{pH} 8$ (citrate-phosphate buffer), $5^{\circ} \mathrm{C}, 15 \mathrm{~min}$	67
$\mathrm{MeCH}_{2} \mathrm{NO}_{2}$	$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhNCO}, \mathrm{PhH}$, refluxing, 1 h	66
$\mathrm{EtCH}_{2} \mathrm{NO}_{2}$	$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhNCO}, \mathrm{PhH}$, refluxing, 1 h	67
$\mathrm{PrCH}_{2} \mathrm{NO}_{2}$	$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhNCO}, \mathrm{PhH}$, refluxing, 1 h	71
$\mathrm{EtOCOCH} 2 \mathrm{NO}_{2}$	$\begin{aligned} & \mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhNCO}, \mathrm{PhH}, \\ & 35^{\circ} \mathrm{C}, 1 \mathrm{~h} \end{aligned}$	59
$\mathrm{MeOCO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NO}_{2}$	$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhNCO}, \mathrm{PhH}$, refluxing, 1 h	66

The 1,3-dipolar cycloaddition of anthracene-9-carbonitrile N-oxide 109 to 2,3-dihydrofuran 1 or to 4-methoxycarbonyl-2,3dihydrofuran has been used to prepare the corresponding adducts $110 .{ }^{63}$

$\mathrm{R}=\mathrm{H}(61 \%)$, COOMe (31\%).
Thorough investigation of 1,3-dipolar cycloaddition reactions involving 2,3-dihydrofuran 1 and benzonitrile and 2,4,6-trimethylbenzonitrile N-oxides has shown that these reactions are highly regioselective and that the 'head-to-head' coupling giving adducts $\mathbf{1 1 1}$ is the main reaction route. Only slight amounts of products $\mathbf{1 1 2}$ resulting from the 'head-to-tail' addition were isolated. ${ }^{64}$

The same investigators ${ }^{64}$ also found that the enol ether $\mathbf{1}$ reacts with nitrile N-oxides 1.8 times more rapidly than cyclopentene. They attributed this result to the resonance interaction of the double bond with the electron pair on the oxygen atom, which leads to an increase in the electron density on the carbon atom in the 4-position of the enol ether and to an increase in the electrophilicity of the double bond.

The carbonitrile N-oxides of the furan series $\mathbf{1 1 3}$ react with the enol ether $\mathbf{1}$ stereospecifically to give adducts $\mathbf{1 1 4}$ (yields 71% $85 \%) .{ }^{65}$

$\mathrm{R}=\mathrm{H}, \mathrm{NO}_{2}, 4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$.
The 1,3-dipolar cycloaddition of 2,3-dihydrofuran 1 to the carbonitrile N-oxides of the pyrazine series $(\mathbf{1 1 5}, \mathbf{1 1 6})$ or of the pteridine series (117) has made it possible to synthesise adducts $\mathbf{1 1 8}, \mathbf{1 1 9}$, or $\mathbf{1 2 0}$, respectively. ${ }^{66}$ The reactions were carried out under an inert atmosphere.

$\mathrm{R}=\mathrm{COOEt}(60 \%), \mathrm{CN}(10 \%)$.

The enol ether 1 enters into cyclocondensation with tributylstannyl iodoacetate or α-iodopropionate $\mathbf{1 2 1}$ in the presence of azobisisobutyronitrile (AIBN) in boiling benzene to give 2,8-di-oxabicyclo[3.3.0]octan-3-one $\mathbf{1 2 2}(\mathrm{R}=\mathrm{H}$, yield $78 \%)$ or its 4-methyl-derivative 122 ($\mathrm{R}=\mathrm{Me}$, yield 72%). The latter compound is formed as a mixture of diastereomers in a ratio of $1: 1 .{ }^{67,68}$

$\mathrm{R}=\mathrm{H}, \mathrm{Me}$.

4. [4+2]-Cycloaddition

Two [4+2]-cycloaddition products as mixtures of two isomers ($\mathbf{1 2 3 a}, \mathbf{b}$ and $\mathbf{1 2 4 a , b}$) and $[3+2]$-cycloaddition product 125 have been obtained by the reaction of the enol ether $\mathbf{1}$ with tropolone under an elevated pressure. The product ratio $(\mathbf{1 2 3}+\mathbf{1 2 4}): \mathbf{1 2 5}$ is pressure-dependent. ${ }^{69}$

123a: $\mathrm{X}=\mathrm{O}, \mathrm{Y}=\mathrm{CH}_{2}$;
123b: $\mathrm{X}=\mathrm{CH}_{2}, \mathrm{Y}=\mathrm{O}$.
Published studies indicate that $[4+2]$-cycloaddition of $2,3-$ dihydrofuran or its derivatives to esters of 2-pyronecarboxylic acids can be carried out under irradiation with actinic light, in the presence of catalysts, or it can be induced thermally.

The thermal condensation of the enol ether 1 with methyl 2-pyrone-5-carboxylate and the condensation induced by UV radiation afford different products. When the initial compounds were kept in benzene at $60-80^{\circ} \mathrm{C}$, methyl 9-oxo-3,8-dioxatricyclo[5.2.2.0 ${ }^{2.6}$]undec-10-ene-11-carboxylate $\mathbf{1 2 6}$ was obtained as a mixture of two isomers (endo, yield 25% and exo, yield 38%), ${ }^{70}$ whereas the photochemical reaction, in which the orientation of the addends was opposite, afforded methyl 8-oxo-3,9-dioxatricyclo[5,2,2,0 $0^{2.6}$] undec-10-ene-10-carboxylate 127. ${ }^{31}$

In the presence of lanthanide shift-reagents, the cycloaddition of enol ether $\mathbf{1}$ to methyl 2-pyrone-3-carboxylate occurs smoothly give products in high yields. When the reaction is carried out at $20^{\circ} \mathrm{C}$ in the presence of $\mathrm{Eu}(\mathrm{hfc})_{3}$, adduct $\mathbf{1 2 8}$ can be obtained in a yield of $93 \%-96 \% .{ }^{71-73}$ In the reaction carried out at $0{ }^{\circ} \mathrm{C}$ for 0.5 h under an argon atmosphere in the presence of $\mathrm{Yb}(\mathrm{OTf})_{3}$, the yield of the product was $93 \% .{ }^{74}$

128
However, the thermal reaction (DMSO, $70-80^{\circ} \mathrm{C}$) in the absence of a shift-reagent afforded the adduct $\mathbf{1 2 8}$ in a yield of only 41%. ${ }^{71}$

Compound $\mathbf{1 2 9}$ is formed in 96% yield upon the [4+2]cycloaddition of the enol ether $\mathbf{1}$ to the 2-pyrone derivative $\mathbf{1 3 0}$ in the presence of $\mathrm{Eu}(\mathrm{hfc})_{3} .^{74}$

129

The kinetics of the $[4+2]$-cycloaddition of various unsaturated compounds to dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate have been studied. ${ }^{75}$ It was found that the reaction involving the enol ether $\mathbf{1}$ occurs 180 times faster than that with 2,3-dihydropyran and 6 times faster than the reaction involving ethyl vinyl ether or cyclopentene.

Heating of the enol ether $\mathbf{1}$ with pyranono[3,4-b]indole 131a,b in the presence of Pd / C in a sealed tube has given carbazole derivatives 132a (from 131a, yield 58%) or a mixture of isomers 132b and $\mathbf{1 3 3}$ (from 131b, yield 85%, ratio $5: 4$).

Evidently, the first stage of this process is [$4+2]$-cycloaddition, which is not regioselective in the case of the phenylsubstituted derivative 131b. The resulting adducts 134a,b and 135 lose a CO_{2} molecule and thus generate indole-2,3-quinodimethane derivatives $\mathbf{1 3 6 a}, \mathbf{b}$ and $\mathbf{1 3 7}$, which undergo a 1,5 -sigmatropic H -shift, which leads (after cleavage of the tetrahydrofuran ring) to the final products 132a,b or $\mathbf{1 3 3} .{ }^{.76}$

The Diels - Alder condensation of the vinyl-substituted dihydrofuran 138 with N-phenylmaleimide or with 4-phenyl-1,2,4-triazoline-3,5-dione has given the corresponding adducts 139 (yield 21%) or $\mathbf{1 4 0}$ (yield 38%). ${ }^{77}$

The [4+2]-cycloaddition of methyl (E)-3-(2,3-dihydro-5-furyl)acrylate 141 to 4-phenyl-1,2,4-triazoline-3,5-dione is highly stereoselective and affords almost exclusively the trans-isomer of the adduct $142(E: Z \geqslant 95: 1$, yield $88 \%) .{ }^{77}$

142

The cyclotrimer of N-methyleneaniline $\mathbf{1 4 3}$ reacts with 2,3dihydrofuran in the presence of titanium(IV) chloride giving rise to $2,3,3 a \beta, 4,5,9 b \beta$-hexahydrofuro[3,2-c]quinoline $\mathbf{1 4 4}$ (yield $16.8 \%) .{ }^{78}$

The first stage of the interaction of enol ethers with azomethines is obviously the [$4+2$]-cycloaddition involving the phenyl substituent. This is followed by the 1,3 -shift of hydrogen, which restores the aromatic system and results in the formation of tetrahydroquinoline derivatives.

In the first study ${ }^{79}$ devoted to the interaction of enol ethers with azomethines, the reaction of 5-methyl-2,3-dihydrofuran 15 with azomethines of the general formula $\mathrm{ArN}=\mathrm{CHR}_{1}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was studied. The authors reported that this process is exothermic and is completed at ambient temperature. The reaction proceeds stereospecifically and affords compounds 145 or 146.

However, more recently, ${ }^{80}$ it was shown that the reaction of the enol ether $\mathbf{1 5}$ with azomethines $\mathbf{1 4 7}$ is non-stereospecific and results in the formation of mixtures of diastereomers 148a,b in a ratio of $1: 1$.

$\mathrm{Ar}=\mathrm{Ph}, 2-\mathrm{ClC}_{6} \mathrm{H}_{4}$.

When the enol ether $\mathbf{1 5}$ reacts with the azomethines $\mathrm{PhN}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2$ in benzene in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$ for 4 h , a mixture consisting of equal amounts of cis148a and trans-dl-2,3,3a,4,5,9b-hexahydro-9b-methyl-4-(o-nitrophenyl)furo[$3,2-c]$ quinoline $\mathbf{1 4 8 b}\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right)$ is also formed. ${ }^{81}$ A detailed study of the reactions of the enol ether $\mathbf{1 5}$ with azomethines of the general formula $\mathrm{ArN}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OR}$ 149a-c has shown that, depending on the nature of Ar , the process yields either one or two pairs of diastereomers.

156-158

159-161

149a, 150, 153, 156, 159: $\mathrm{X}=\mathrm{Y}=\mathrm{O}, n=2, \mathrm{R}=\mathrm{Me}$;
149b, 151, 154, 157, 160: $\mathrm{X}=\mathrm{NAc}, \mathrm{Y}=\mathrm{CH}_{2}, n=2, \mathrm{R}=\mathrm{H}$;
149c, 152, 155, 158, 161: $\mathrm{X}=\mathrm{Y}=\mathrm{CH}_{2}, n=1, \mathrm{R}=\mathrm{Me}$.
For example, two pairs of diastereomers are formed in the reactions of dihydrofuran 15 with each of compounds $149 \mathrm{a},{ }^{82}$ $149 \mathrm{~b},{ }^{83}$ or 149 c . The overall yield of reaction products 150,153 , $\mathbf{1 5 6}$, and $\mathbf{1 5 9}$ is 15%, that of $\mathbf{1 5 1}, \mathbf{1 5 4}, \mathbf{1 5 7}$, and $\mathbf{1 6 0}$ is 48%, and that of $\mathbf{1 5 2}, \mathbf{1 5 5}, \mathbf{1 5 8}$, and $\mathbf{1 6 1}$ is 64%.

On the other hand, the reactions between the enol ether 15 and the Schiff's bases 162a, ${ }^{82} \mathbf{1 6 2 b},{ }^{83}$ or $\mathbf{1 6 2} \mathbf{c}^{83}$ resulted in the formation of only one diastereomer pair.

162a, 163, 166: $\mathrm{X}=\mathrm{Y}=\mathrm{O}, n=1, \mathrm{R}=\mathrm{Me}$;
162b, 164, 167: $\mathrm{X}=\mathrm{CH}_{2}, \mathrm{Y}=\mathrm{NAc}, n=1, \mathrm{R}=\mathrm{H}$;
162c, 165, 168: $\mathrm{X}=\mathrm{NAc}, \mathrm{Y}=\mathrm{CH}_{2}, n=1, \mathrm{R}=\mathrm{H}$.

The overall yield of the two isomers 163 and 166 was 45%, that of the compounds $\mathbf{1 6 4}$ and 167 was 48%, and the yield of $\mathbf{1 6 5}$ and 168 was 45%.

Similar stereochemical results have been obtained in another study ${ }^{84}$ of the interaction of the enol ether $\mathbf{1 5}$ with Schiff's bases 169a,b and 176.

170-172

173-175

169a, 170, 173: $\mathrm{R}=\mathrm{H} ; 169 \mathrm{~b}, 171,174: \mathrm{R}=\mathrm{OH} ; 169 \mathrm{c}, 172,175: \mathrm{R}=\mathrm{OMe}$.
The overall yield of the diastereomers $\mathbf{1 7 0}$ and $\mathbf{1 7 3}$ was 81%, that of $\mathbf{1 7 1}$ and $\mathbf{1 7 4}$ was 47%, and the yield of $\mathbf{1 7 2}$ and $\mathbf{1 7 5}$ was 46%.

Acenaphthene derivatives $\mathbf{1 7 7}$ a and $\mathbf{1 7 7 b}$ were obtained in an overall yield of 42%.

177a

On heating with sulfur, the diastereomers 163 and 166 are converted into the quinoline derivative $\mathbf{1 7 8}$ in 70% yield. ${ }^{83}$

163, $166 \xrightarrow[140^{\circ} \mathrm{C}]{\mathrm{S}}$

The reaction of N, N^{\prime}-bis(p-methoxybenzylidene)- p-phenylenediamine with two moles of the enol ether 15 affords compound $\mathbf{1 7 9}$ in 32% yield. ${ }^{83}$

$15 \left\lvert\, \begin{aligned} & \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{PhH} \\ & 20{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}\end{aligned}\right.$

Adduct $\mathbf{1 8 0}$ has been synthesised in 33% yield by the cycloaddition of the enol ether $\mathbf{1 5}$ to N-benzylidene-4-aminopyridine in the presence of acetic acid at ambient temperature. ${ }^{85}$

The stereochemistry of the reaction of the enol ether $\mathbf{1}$ with azomethines $\mathbf{1 8 1}$, containing various substituents in the 4 - or 2 positions of the benzene ring, has been studied. ${ }^{86}$ The results obtained imply that this reaction proceeds non-stereoselectively, the isomers 182a being usually formed in somewhat larger amounts than the isomers $\mathbf{1 8 2 b}$. The nature of the substituents R in the 4-position of the benzene ring exerts only a slight influence on the ratio between the diastereomers 182a and 182b, except for azomethines in which $\mathrm{R}=4-\mathrm{OMe}$ and $\mathrm{R}=2-\mathrm{NO}_{2}$. In the latter case, only one isomer was obtained.

181

182a
182b

R		Yield (\%)	
181	182	182a	182b
H	H	31	23
4-Me	8-Me	27	26
$4-\mathrm{OMe}$	$8-\mathrm{OMe}$	15	33
$4-\mathrm{Cl}$	$8-\mathrm{Cl}$	38	31
$4-\mathrm{NO}_{2}$	$8-\mathrm{NO}_{2}$	36	31
$2-\mathrm{NO}_{2}$	$6-\mathrm{NO}_{2}$	41	-

When various Lewis acids are used as catalysts in the reaction of the enol ether $\mathbf{1}$ with N -benzylideneaniline, the yields of the adducts 183 vary over a wide range. ${ }^{87}$

Catalyst $\quad \mathrm{EtAlCl}_{2} \quad \mathrm{ZnCl}_{2} \quad \mathrm{SnCl}_{4} \quad \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} \quad \mathrm{AlCl}_{3} \quad \mathrm{TiCl}_{4}$
$\begin{array}{lllllll}\text { Yield (\%) } & 80 & 73.1 & 71.2 & 68.9 & 60.3 & 29.3\end{array}$
Japanese researchers ${ }^{88}$ have studied the cycloaddition of the enol ether 1 to azomethines 184 in the presence of tin(IV) chloride and proposed a scheme for the formation of diastereomeric pairs of products $\mathbf{1 8 5}$.

184

185a: $R=H, R^{1}=\operatorname{Ar} ; 185 b: R=A r, R^{1}=H$.

Ar	Time $/ \mathrm{h}$	Yield (\%)	
		$\mathbf{1 8 5 a}$	$\mathbf{1 8 5 b}$
2-Furyl	25.5	4.5	13
2-Thienyl	42.5	8.1	8.3
2-Pyridyl	48	17	-

The reaction of the enol ether $\mathbf{1}$ with N-benzylideneaniline in the presence of montmorillonite $\mathrm{K} 10 / \mathrm{Fe}(\mathrm{III})$ occurs ambiguously: apart from the normal cycloaddition product 186 (yield 81%), the [2 +2$]$-cycloaddition product, namely, 6,7-diphenyl-2-oxa-7-azabicyclo[3.2.0]heptane 187 is formed (yield 7\%). ${ }^{89}$

When the reaction of the compound $\mathbf{1}$ with azomethines $\mathbf{1 8 8}$ has been conducted in the presence of methanol and with Lewis acids as catalysts, together with the diastereomers $\mathbf{1 8 9} \mathbf{a}, \mathbf{b}$, which are the normal reaction products, compounds $\mathbf{1 9 0}$ were obtained. ${ }^{90}$

$\mathrm{R}=\mathrm{Ph}, \mathrm{PhCO}$.

The reaction of isoquinolinium salt 191 and the enol ether $\mathbf{1}$ gave adduct 192, which was converted into 4,5-dioxo-2,3,4,5-tetrahydronaphtho[1,2-b]furan 193 in four steps without isolation. ${ }^{91}$

The interaction of the enol ether $\mathbf{1}$ with 1,2,4-triazine derivatives 194 begins with [$4+2$]-cycloaddition giving the corresponding adducts. Under reaction conditions (refluxing in chloroform), the adducts 195 formed in the first stage eliminate a nitrogen molecule and thus generate bicyclic compounds 196, which then undergo cleavage of the five-membered ring and are converted into the pyridine derivatives $197 .{ }^{92}$

Compound	R^{1}	R^{3}	Time $/ \mathrm{h}$	Yield (\%)
197a	COOEt	COOEt	49	77
197b	Ph	COOEt	46	55
197c	COOEt	NHCOMe	120	67
197d	COOEt	Me	45	80

On heating in a sealed tube, the enol ether 1 reacts regioselectively with $1,2,4$-triazine derivatives $\mathbf{1 9 4 b}$ with the retention of the tetrahydrofuran ring to give compound 198 , which reacts regioselectively with another molecule of the enol ether 1 under the reaction conditions, and compound 199 is formed as the final reaction product (yield 69%). ${ }^{92}$

1,2,4-Triazine 194e ($\left.\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{COOEt}\right)$ also reacts with two molecules of the enol ether $\mathbf{1}$ when heated in a sealed tube; this reaction affords compound 200 in 68% yield. However, in this case, orientation of the first added molecule of the enol ether $\mathbf{1}$ is opposite. ${ }^{92}$

It is of interest that the same reaction carried out in boiling chloroform affords all three possible regioisomers 200, 201, and 202 in $64 \%, 10 \%$, and 10% yields, respectively. ${ }^{92}$

The adducts 204 obtained by heating the compound $\mathbf{1}$ with 1,3,4-oxadiazin-6-one derivatives 203 eliminate a nitrogen molecule under the reaction conditions, and the ketenes 205 thus generated react with a further molecule of the enol ether $\mathbf{1}$ giving finally bicyclo[3.2.0]heptan-6-one derivatives $\mathbf{2 0 6}$ as mixtures of diastereomers (yields 42% and 58%). ${ }^{93}$

$\mathrm{R}=\mathrm{Ph}, \mathrm{PhCH}_{2}$.
Ethyl E-3-(tolyl-p-sulfonylazo)but-2-enoate 91 reacts with 5-methyl-2,3-dihydrofuran $\mathbf{1 5}$ according to the [3+2]-cycloaddition reaction pattern. ${ }^{49}$ However, the same heterodiene 91 reacts with 2,3-dihydrofuran also according to the [4+2]-cycloaddition scheme to give two diastereomers 207a,b, one of which (207b) was isolated in a yield of $31 \% .^{49}$

Triformylmethane enters into the reaction with the enol ether 1 at $20^{\circ} \mathrm{C}$ affording a mixture of isomeric 2,9-dioxabicyc-lo[4.3.0]non-3-ene derivatives 208a,b (yield 73\%, ratio 208a: 208b $=1: 4) .{ }^{94}$

a: $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OH}$
b: $\mathrm{R}=\mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{H}$
β-Methoxystyrene reacts with the enol ether $\mathbf{1}$ upon irradiation with the visible light in the presence of tetraphenylporphyrin to give aldehyde 209 (yield 13%), which is converted into the furobenzofuran derivative $\mathbf{2 1 0}$ on treatment with dilute sulfuric acid. Matsumoto and Kudora ${ }^{95}$ proposed the following scheme for the formation of the compounds 209 and 210:

2,3,3a,7a-Tetrahydro- $4 H$-furo[2.3- b]pyran and its derivatives 211 have been prepared by heating the enol ether $\mathbf{1}$ (or $\mathbf{1 5}$) with acrolein or with methyl vinyl ketone in the presence of hydroquinone. ${ }^{96}$

R	R^{\prime}	$T,{ }^{\circ} \mathrm{C}$	Yield (\%)
H	H	140	60
Me	H	80	39
H	Me	160	25
Me	Me	140	25

The [4+2]-cycloaddition of 5-methoxy-4-methyl-3-phenyl-2,3-dihydrofuran 212 to acrolein has been carried out ${ }^{97}$ at $25^{\circ} \mathrm{C}$, which has led to the cis-isomer of 1α-methoxy- 6α-methyl-7-phenyl-2,9-dioxabicyclo[4.3.0]non-3-ene 213.

Diastereomeric compounds 214a,b have been synthesised from the enol ether $\mathbf{1}$ and aldehydoesters at $25^{\circ} \mathrm{C} .9^{98}$

α, β-Unsaturated ketones 215 containing the bulky $\mathrm{COOBu}^{\mathrm{t}}$ group also react fairly readily with the enol ether $\mathbf{1}$ at $20^{\circ} \mathrm{C}$ giving adducts $216 .{ }^{99}$

R	Et	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{11}$	Ph	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$
Time $/ \mathrm{h}$	10	15	20	17	3
Yield (\%)	40	36	54	70	79

The reaction of the enol ether 1 or 5-(1-hydroxy-1-methyl-ethyl)-2,3-dihydrofuran with 3-phenylsulfonylbut-3-en-2-one 217 has been reported. ${ }^{100}$

R	Time $/ \mathrm{h}$	Yield (\%)
H	2.5	86
$\mathrm{C}(\mathrm{Me})_{2} \mathrm{OH}$	1	50

An unexpected result was obtained when the ketone 217 was made to react with 5-cyano-2,3-dihydrofuran 218. Instead of a [4+2]-cycloaddition product, spiro-compound 219 was isolated in 35% yield. ${ }^{100}$

The reaction of 2,3-dihydrofuran 1 with 4-ethoxy-1,1,1-tri-fluorobut-3-en-2-one $\mathbf{2 2 0}$ occurs regioselectively but nonstereoselectively; this reaction leads to a mixture of diastereomers of 4-ethoxy-6-trifluoromethyl-2,3,3a,7a-tetrahydro-4H-furo-[2,3-b]pyran 221 in 68% yield. ${ }^{101}$

The [4+2]-cycloaddition product $\mathbf{2 2 2}$ has been synthesised in 86% yield by the reaction of the compound 1 with heterodiene 223. ${ }^{102}$

Heating of the enol ether $\mathbf{1}$ with heterodiene $\mathbf{2 2 4}$ has given compound $\mathbf{2 2 5}$ as a mixture of diastereomers. ${ }^{103}$

A more complex picture is observed when the enol ether $\mathbf{1}$ is introduced into the reaction with unsaturated ketones 226. Depending on the nature of substituents in the ketone molecule, the process gives either adduct 227a or a mixture of adducts $\mathbf{2 2 7 a}$ and 227b and compounds 228a and 228b resulting from their transformations. ${ }^{104}$

The researchers cited ${ }^{104}$ explained the formation of the compounds $\mathbf{2 2 8}$ from the adducts 227 in terms of the following scheme:

The reaction of the enol ether $\mathbf{1}$ with methyl vinyl ketone 229 in the presence of zinc chloride proceeds endo-selectively and gives rise to compound $\mathbf{2 3 0}$ (yield 89%). ${ }^{105}$

In the absence of zinc chloride, this reaction needs to be carried out in a sealed tube at $85^{\circ} \mathrm{C}$ for 20 h .

Treatment of diketone 231 with lithium methoxide and then by acetyl chloride affords the O-acetyl derivative 232; on boiling in the enol ether $\mathbf{1}$, this compound eliminates N-acetylpiperidine and is thus converted into a new diketone, compound 233, which reacts with the enol ether $\mathbf{1}$ giving tricyclic compound $\mathbf{2 3 4}$ (yield $48 \%) .{ }^{106}$

Compound 235 has been prepared by condensing the enol ether 1 with cyclohexane-1,3-dione and formaldehyde in the presence of proline. It is clear that the interaction of the diketone and formaldehyde results in the intermediate formation of heterodiene 236, which undergoes [4+2]-cycloaddition to the enol ether. ${ }^{107}$

When heterodiene 237 is heated with the enol ether $\mathbf{1}$ in a sealed tube for a long period, two diastereomeric adducts 238a and 238b are produced (yields 60% and 10%). ${ }^{108}$

The [4+2]-cycloaddition of the enol ether $\mathbf{1}$ to compound 239 has led to adduct 240 (yield 61%). ${ }^{109}$

Of the two heterodiene systems, present in the compound 241, $\mathrm{C}=\mathrm{N}-\mathrm{C}=\mathrm{O}$ and $\mathrm{N}=\mathrm{C}-\mathrm{C}=\mathrm{O}$, the system that incorporates the carbon-oxygen semicyclic double bond is involved in the cycloaddition with the enol ether $\mathbf{1}$ affording adduct $\mathbf{2 4 2}$ in 90% yield. ${ }^{110}$

Nitroalkene 243 enters into Diels - Alder condensation with 2,3-dihydrofuran 1 on heating in DMF, the [4+2]-cycloaddition product $\mathbf{2 4 4}$ being formed in 80% yield. ${ }^{111}$

2,3-Dihydrofuran 1 and 1,2-naphthoquinone exposed to the radiation of a high-pressure mercury lamp ($\lambda=340 \mathrm{~nm}$) interact following the $[4+2]$-cycloaddition pattern; this affords a mixture of two isomeric adducts 245 and 246. A crucial influence on the yield of the adducts is exerted by the polarity of the solvent used. When the reaction is conducted in non-polar benzene $(D=0.00)$, the overall yield of the compounds 245 and 246 is 55%; in the case where acetonitrile $(D=3.37)$ is used, the overall yield of the adducts is only $4 \% .{ }^{52}$

The reaction of the compound $\mathbf{1}$ with dimethyl acetals $\mathbf{2 4 7}$ in the presence of trimethylsilyl trifluoromethanesulfonate and aluminium chloride involves the intermediate formation of the oxonium ions $\mathbf{2 4 8}$, which are converted into the diastereomers of compound 249 under the reaction conditions. ${ }^{112}$ This process can only formally be classified as cycloaddition.

Similarly, 'formal cycloaddition' of the enol ether 1 to oxime 250 (treatment with sodium carbonate at room temperature) affords 3-acetyl-4a,5,6,7a-tetrahydro-4H-furo[3,2-e]-1,2-oxazine $251 .{ }^{113}$

5. Other cycloaddition reactions

2,3-Dihydrofuran $\mathbf{1}$ has been made to react with phenyl isocyanate in the presence of bis(cyclooctadiene)nickel (COD) $)_{2} \mathrm{Ni}$ and tricyclohexylphosphine at a low temperature; this gave organometallic compound 252 in 93.5% yield. The latter reacts with carbon monoxide or with 1,2-bis(diphenylphosphino)ethane resulting in the formation of furopyrrole derivative $\mathbf{2 5 3}$ or organometallic compound 254 (yields 63.8% or 62%, respectively). ${ }^{14}$

Three compounds: exo-isomer 255, exo-isomer 256, and endoisomer 257, have been isolated in $2: 1: 3$ ratio from the products of the photochemical reaction of 2,3-dihydrofuran 1 with anisole. ${ }^{115}$

A totally different picture is observed in a photochemical reaction of 2,3-dihydrofuran 1 with the anisole derivative containing an electron-withdrawing cyano-group in the 2-position. The bicyclo[6.3.0]undecatriene derivative $\mathbf{2 5 8}$ is the primary reaction product, which isomerises upon irradiation into tricyclic compound 259. An equilibrium shifted toward the compound 259 is established under the reaction conditions. The latter compound is converted into the bicyclic compound $\mathbf{2 5 8}$ on heating. ${ }^{116}$

The reaction of 1,3-dialkylimidazolidines 260 with the enol ethers $\mathbf{1}$ or $\mathbf{1 5}$ in the presence of trifluoroacetic acid has led to octahydrofuro[3,2-f]-1,4-diazepine derivatives 261. ${ }^{117}$

The reaction of 5-methyl-2,3-dihydrofuran 15 with 3-substituted oxazolidines 262 in the presence of Lewis acids is accompanied by expansion of the oxazolidine ring and results in the formation of 4-R-8a-methylperhydrofuro[3.2-f]-1,4-oxazepines 263 in $50 \%-75 \%$ yields. ${ }^{118,119}$

III. Recyclisation reactions

Two methods have been proposed for the synthesis of tryptophol derivatives 264. The first method involves heating of a mixture of the enol ether 1 and arylhydrazine in dioxane for 6 h . The indole derivatives $\mathbf{2 6 4}$ are obtained without isolation of the intermediate hydrazones. ${ }^{120-122}$

According to the second method, tryptophol derivatives 265 are prepared in two stages. Arylhydrazones 266 are obtained initially from the enol ether $\mathbf{1}$ and the corresponding arylhydrazines; then the arylhydrazones are cyclised by heating in the presence of zinc chloride under an inert atmosphere to give the target compounds 265. ${ }^{123-125}$

R	R^{\prime}	Yield of 265 (\%)	Ref.
H	$7-\mathrm{I}$	48	123
6-F	$7-\mathrm{I}$	-	124
6-F	$7-\mathrm{Br}$	48	125

It has been shown ${ }^{126}$ that the reaction of the compound $\mathbf{1}$ with 2,3-dimethoxyphenylhydrazine in the presence of hydrogen chloride at $4{ }^{\circ} \mathrm{C}$ affords two products, namely, arylhydrazone 267 (yield 42.5%) and the hydrazine derivative 268 (yield 42.5%).

When the resulting mixture of 267 and 268 is heated under an inert atmosphere in the presence of zinc chloride, the compounds cyclise leading to only one product, 3-(2-hydroxyethyl)-6,7-dimethoxyindole, its yield being as low as 10%. ${ }^{126}$

Cyclocondensation of ethyl 5-methyl-2,3-diphenyl-2,3-di-hydrofuran-4-carboxylate with 2,4-dinitrophenylhydrazine in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $20{ }^{\circ} \mathrm{C}$ has led to 2-(2,4-dinitrophenyl)-6a-methyl-4,5-diphenyl-hexahydrofuro[2,3-c]pyrazol-3-one 269 in 18% yield. ${ }^{127}$

The pyrazole derivatives $\mathbf{2 7 0}$ have been prepared by recyclisation of 4,5-bis(methoxycarbonyl)-2,3-dihydrofurans 271 with hydrazine hydrate. ${ }^{128}$

The reaction of 4-acetyl-5-methyl-2,3-dihydrofuran with hydrazine, phenylhydrazine, or tosylhydrazine has led to compounds of the pyrazole series $\mathbf{2 7 2}$. ${ }^{129}$

R	H	Ph	$\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
Yield $(\%)$	54	47	62

The reaction of the enol ether 1 with toluene- p-sulfonyl azide affords imine 273, which is recyclised to 4 -amino-3,5-bis(3-hydroxypropyl)-1,2,4-triazole 274 (yield 88%) on heating with hydrazine hydrate in toluene. ${ }^{130}$

274

4-(Trihalomethylcarbonyl)-2,3-dihydrofurans 275 recyclise on treatment with hydroxylamine in the presence of pyridine even at $0^{\circ} \mathrm{C}$ to give 5-hydroxy-4-(2-hydroxyethyl)-5-trihalo-methyl-2-isoxazolines 276. ${ }^{131}$

275a,b

$\mathrm{X}=\mathrm{F}(\mathbf{a}), \mathrm{Cl}(\mathbf{b})$.
The trifluoroacetyl derivative 275a is more reactive. Its reaction is completed over a period of 5 h giving rise to compound $\mathbf{2 7 6 a}$ in 90% yield. The compound $\mathbf{2 7 5} \mathbf{b}$ reacts over a period of 12 h to give 276b in 85% yield. ${ }^{131}$

On heating with selenium in 1-methylnaphthalene, compounds 277 containing both furan and 2,3-dihydrofuran rings are converted into benzofuran derivatives $\mathbf{2 7 8}$. ${ }^{132}$

Condensation of methyl 5-methyl-2,3-dihydrofuran-4-carboxylate $\mathbf{2 7 9}$ with resorcinol in the presence of sulfuric acid gives 7-hydroxy-3-(2-hydroxyethyl)-4-methylcoumarin 280. ${ }^{133}$

279

The 2,3-dihydrofuran 279 reacts with 1-naphthol in the presence of 80% sulfuric acid to afford the benzocoumarin derivative $281 .{ }^{133}$

In the presence of hydrochloric acid, 2,3-dihydrofuran 1 reacts with 2,2-dimethylpropane-1,3-diol at room temperature, and the 1,3-dioxane derivative $\mathbf{2 8 2}$ is formed in 83% yield. ${ }^{134}$

282

A sulfur-containing analogue of the compound 282 (compound 283) has been synthesised in 43% yield by the reaction of the compound 1 with propane-1,3-dithiol in the presence of boron trifluoride etherate followed by treatment of the reaction product with triethylamine. ${ }^{135}$

It has been reported ${ }^{136}$ that the reaction of the salt 284 with 2,3-dihydrofuran 1 and propane-1,3-dithiol leads to compound 285.

285

IV. Substitution of hydrogen atoms in 2,3-dihydrofurans

Photocatalytic heterogeneous dehydrodimerisation of the enol ether 1 in the presence of zinc sulfide and water results in the formation of bi(2,3-dihydrofuran-3-yl). ${ }^{137}$

When 2,3-dihydrofuran 1 reacts with 5-iodo-2,4-dimethoxypyrimidine in the presence of palladium acetate, tributylamine, sodium acetate, and a phase transfer catalyst, the hydrogen atom in the 2-position of the enol ether is substituted, and the double bond in the dihydrofuran ring partly isomerises.

This gives two compounds 286 (yield 55%) and 287 (yield $26 \%) .{ }^{138}$

Two compounds $\mathbf{2 8 8}$ and $\mathbf{2 8 9}$ in an overall yield of 68% and in a ratio of $3: 4$ have also been synthesised by the reaction of the dihydrofuran 1 with 5-iodouracil in the presence of palladium acetate, tributylamine, and triphenylphosphine. ${ }^{138}$

$\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Bu}_{3} \mathrm{~N}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{DMF}, \mathrm{N}_{2}$, ampule

If triphenylarsine is used in this reaction instead of triphenylphosphine, the compounds $\mathbf{2 8 8}$ and $\mathbf{2 8 9}$ are formed over a period of 3 h at $50^{\circ} \mathrm{C}$ in 58% overall yield and in a $2: 3$ ratio. ${ }^{138}$

The reaction of 5-iodouracil with the 2,3-dihydrofuran derivative $\mathbf{2 9 0}$ in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Bu}_{3} \mathrm{~N}$, and $\mathrm{Ph}_{3} \mathrm{As}$ under an inert atmosphere occurs stereoselectively and affords 5-(5-hydrox-ymethyl-2,5-dihydrofuran-2-yl)uracil 291 in 58\% yield. ${ }^{138}$

291

In order to prepare initial compounds for the synthesis of $2^{\prime}, 3^{\prime}$ -deoxy- C-nucleosides, the reaction of 5-iodo-2,4-dimethoxypyrimidine with $2(R)$-(triphenylmethoxymethyl)-2,3-dihydrofuran 292 has been studied. By varying reaction conditions, Zhang and Daves ${ }^{139}$ prepared compounds 293 and 294 in various proportions.

$\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-} ; \mathrm{H}_{2} \mathrm{O}, \mathrm{DMF}, \mathrm{N}_{2}, 20{ }^{\circ} \mathrm{C}, 20 \mathrm{~h} \quad 56 \quad 31$ $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Ph}_{3} \mathrm{As}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}, \mathrm{N}_{2}, 75^{\circ} \mathrm{C}, 10 \mathrm{~h} 1859$

The reaction of 5-iodo-2,4-dimethoxypyrimidine with $2(S)$ -(triphenylmethoxymethyl)-2,3-dihydrofuran 295 also led to two isomers 296 and 297, the ratio between them being dependent on the reaction conditions. ${ }^{139}$

The reactions involving the compound 295 were carried out under the same conditions as those with the isomer 292. The compounds 296 and 297 were obtained in the following yields: in water and DMF at $20^{\circ} \mathrm{C}, 53 \%$ and 30%; in MeCN at $75^{\circ} \mathrm{C}, 20 \%$ and 58%. When the reaction of the isomer 295 with the iododerivative was carried out in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Ph}_{3} \mathrm{P}$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ in MeCN at $75^{\circ} \mathrm{C}$ for 10 h under a nitrogen atmosphere, only the isomer 296 was formed in 40% yield. ${ }^{139}$

In the presence of butyllithium, 2,2-dimethyl-2,3-dihydrofuran reacts with 1,6-dioxaspiro[4.5]dec-3-en-2-one 298 to give the lithium derivative $\mathbf{2 9 9}$ arising due to the substitution of the hydrogen atom in the 5-position of 2,2-dimethyl-2,3-dihydrofuran. In the presence of camphorsulfonic acid, the lithium derivative 299 undergoes a rearrangement being thus converted into two compounds $\mathbf{3 0 0}$ and $\mathbf{3 0 1}$ (overal yield 15%, ratio $1: 1$). ${ }^{140}$

V. Addition to the double bond in

 2,3-dihydrofuransThe addition product $\mathbf{3 0 2}$ has been synthesised in 40% yield by the reaction of 5,8-dihydroxy-1,4-naphthoquinone with 2,2-dimethyl-2,3-dihydrofuran in the presence of boron trifluoride etherate in acetic acid. ${ }^{141}$

302

The 2,3-dihydrofuran derivatives $303-305$ containing ω hydroxyalkyl groups in the 5-position undergo spirocyclisation under the conditions of intramolecular addition-oxidation in the presence of $\mathrm{Re}_{2} \mathrm{O}_{7}$ under an inert atmosphere followed by treatment with sodium peroxide.

303

$\begin{array}{lll}n & 1 & 2\end{array}$
Yield (\%) 1848

Ketones 306, which are the addition products formed from the enol ether $\mathbf{1}$ and compounds $\mathbf{3 0 7}$, are converted on heating into the perhydrobenzofuran-6-one derivatives 308 (yields 48\%$50 \%) .{ }^{143,144}$

306
308
$\mathrm{R}=\mathrm{H}, \mathrm{Me}$.

The tetrahydrofuran derivative 309 has been prepared from the enol ether 1, 1-chloro-2-methylprop-2-ene, and di(2-pyridyl) disulfide (yield 6\%). ${ }^{145}$

a) $3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}$; b) KH, THF, $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{I}^{-}$;
c) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Ph}_{3} \mathrm{P},-78{ }^{\circ} \mathrm{C} ;$ d) $\mathrm{H}^{+}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}$;
e) $\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{2}, \mathrm{Bu}_{3} \mathrm{P}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0$ to $-20^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$.

The reactions of 2,3-dihydrofuran $\mathbf{1}$ with uracil or its derivatives $\mathbf{3 1 0}$ containing various substituents in the 5-position have been studied in most detail. The influences of the substituents in the 5-position, of the catalysts and solvents used, and of the reaction temperature and time on the yields of the addition products have been studied. Table 2 presents the substituents R in the initial and final compounds, conditions under which the reactions were conducted, and the yields of the resulting compounds 311 .

Table 2. Conditions of reactions ${ }^{\text {a }}$ of uracil derivatives $\mathbf{3 1 0}$ with 2,3-dihydrofuran $\mathbf{1}$ and yields of addition products $\mathbf{3 1 1}$.

R	Reaction conditions	Yield (\%)	Ref.
H	Py, $170{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$	25	146
H	Py, $180{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$	80	147
F	150-200 ${ }^{\circ} \mathrm{C}$	82-88	148, 149
F	Py, THF, TiCl_{4}	90	150
F	Py, $180{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$	85	147
F	$\mathrm{AlCl}_{3}, \mathrm{DMF}, \mathrm{CHCl}_{3}, 6{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	70.2	151
F	MgCl_{2}, DMF, $120{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$	71	152
F	Py, 4-MeC66 $\mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{H}, 120{ }^{\circ} \mathrm{C}, 21 \mathrm{~h}$	71	153
F	MeCOEt, $180{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$	79	154
F	$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}, \mathrm{MgCl}_{2}, \text { 18-crown-6, }$ $\mathrm{PhH}, 80^{\circ} \mathrm{C}, 7 \mathrm{~h}$	54	155
F	$\mathrm{PCl}_{5},\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{PO}, 20{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$	74.7	156
F	$\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}, \mathrm{DMF}, 100{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$	65	157
F	AcOH, $90-95{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$, dioxane	70	158
F	$\mathrm{LiCl}, 120{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$	95	159
F	$\mathrm{AlCl}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 130{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$	60	160
F	DMF, $35{ }^{\circ} \mathrm{C}, 40 \mathrm{~min}$	81.5	161
F	Py, $\mathrm{F}_{3} \mathrm{CCOOH}, 60{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$	73.9	162
F	AlCl_{3}, tris(3,6-dioxaheptyl)amine, MeCN , refluxing, 2 h	80	163
F	$\begin{aligned} & \text { 1. } \mathrm{Py}, \mathrm{AcOH}, 120^{\circ} \mathrm{C}, 24 \mathrm{~h} \text {; } \\ & \text { 2. AcONa, } 70^{\circ} \mathrm{C}, 4.5 \mathrm{~h} \end{aligned}$	45	164
F	$\mathrm{Py}, \mathrm{H}_{2} \mathrm{O}$ (ethanol), $185^{\circ} \mathrm{C}, 3 \mathrm{~h}$	73	165
F	$\mathrm{SiCl}_{4}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$	82	166
Cl	Py, $150{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$	85	147
Br	Py, $150{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$	74	147
Me	Py, $180{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$	90	147
COOMe	Py, $180^{\circ} \mathrm{C}, 8 \mathrm{~h}$	-	147
CN	Py, $150{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$	65.7	147
I	Py, $170{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$	-	146

${ }^{\text {a }}$ At temperatures above $100^{\circ} \mathrm{C}$, the reactions were carried out in an autoclave.

Under certain conditions, the reactions of the uracil derivatives $\mathbf{3 1 0}$ with excess enol ether $\mathbf{1}$ have led to the corresponding 1,3-di(tetrahydrofuran-2-yl)uracil derivatives 312 (Table 3).

Yet another approach to the synthesis of the compounds $\mathbf{3 1 1}$ and 312 has been developed. According to this approach, 2,3dihydrofurans $\mathbf{1}$ and bis-ethers 313, prepared from the corresponding uracil derivatives $\mathbf{3 1 0}$, are used as the initial compounds (Table 4).

313
$\mathrm{R}^{1}=\mathrm{CMe}_{3}, \operatorname{SiR}_{3}^{2}, \operatorname{SnR}_{3}^{2}\left(\mathrm{R}^{2}=\right.$ Alk $)$.
The reaction of equimolar amounts of the dihydrofuran 1 and the compound 310 with $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ in DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$ for 6 h gives adduct $311(\mathrm{R}=\mathrm{F})$ in 84% yield. If the compounds 310 and $\mathbf{1}$ in a ratio of $1: 2$ react at $20^{\circ} \mathrm{C}$ for 30 h , the reaction leads to a mixture of the compounds $311(\mathrm{R}=\mathrm{F})$ and 312

Table 3. Conditions of reactions of uracil derivatives $\mathbf{3 1 0}$ with 2,3-dihydrofuran ${ }^{\text {a }}$ and yields of compounds $\mathbf{3 1 2}$.

R	Reaction conditions	Yield (\%)	Ref.
H	Py, $180{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$	82.1	147
F	$\mathrm{LiCl}, \mathrm{Cl}_{2} \mathrm{CHCHCl}_{2}$, refluxing, 4.5 h	78.4	167
F	DMF, $135{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$	42	168
F	$\mathrm{AlCl}_{3}, \mathrm{Py}, 130{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$	70	169
F	Py, $160{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$	90	147
F	$150{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$	65	170
F	$\mathrm{SiCl}_{4}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$	75	171
Cl	Py, $150{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}$	86.6	147
Br	Py, $150{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}$	86.8	147
Me	Py, $180{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}$	91.9	147
CONH_{2}	Py, $150{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}$	93.2	147
COOMe	Py, $140{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$	11	147

Table 4. Conditions of reactions of bis-ethers 313 with 2,3-dihydrofuran 1 and yields of compounds $\mathbf{3 1 1}$.

R	R^{1}	Reaction conditions	Yield (\%)	Ref.
F	SiMe_{3}	$\begin{aligned} & 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \\ & \text { refluxing, } 4 \mathrm{~h} \end{aligned}$	86.2	172
F	SiMe_{3}	$\mathrm{AlCl}_{3}, \mathrm{LiI}, \mathrm{I}_{2}, \mathrm{H}_{2} \mathrm{O}, 7{ }^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$	80	171
F	SiMe_{3}	$\mathrm{SnCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, refluxing 3 h	79.4	173
F	SiMe_{3}	$\mathrm{SO}_{2} \mathrm{Cl}_{2}$, THF, $20{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}$	50	174
F	SiMe_{3}	2,4-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, refluxing, 2 h	92.3	175
F	SiMe_{3}	$\mathrm{PyH} \cdot \mathrm{HCl}, \mathrm{MeCN}, 20{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$	$89.6{ }^{\text {a }}$	176
F	SiMe_{3}	SnCl_{4}	90	177
F	SiMe_{3}	Amberlite IR-120, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, refluxing, 6 h	83	178
F	SiMe_{3}	$\mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{AlCl}_{3}, \mathrm{PyH}$, refluxing, 1 h	65	179
F	SiMe_{3}	$\begin{aligned} & 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{H}, \mathrm{MeCN}, 130^{\circ} \mathrm{C} \text {, } \\ & 40 \mathrm{~min} \end{aligned}$	71	180
F	SiMe_{3}	$\mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$	80	181
F	CMe_{3}	$\mathrm{PyH} \cdot \mathrm{HCl}, \mathrm{PyH}$, refluxing, 3 h	65	182
F	SnMe_{3}	$\mathrm{AlCl}_{3}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 3 \mathrm{~h}$	70	183
Br	SiMe_{3}	$\mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, EtOH, $0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$	75	181
I	SiMe_{3}	$\mathrm{NaI}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, refluxing, 3.5 h	79.6	184
Me	SiMe_{3}	$\mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, EtOH, $0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$	70	181
COMe	SiMe_{3}	$\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$	66	185

($\mathrm{R}=\mathrm{F}$), their yields being 40% and 41%, respectively. ${ }^{186}$ The interaction of 5 -fluorouracil with the compound $\mathbf{1}$ and $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ in the presence of triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$ for 6 h affords the compound $311(\mathrm{R}=\mathrm{F})$ in 98% yield. ${ }^{187}$

By successive treatment of a mixture of dimethoxy-derivatives 314 and the dihydrofuran 1 with hydrogen chloride and with sodium carbonate, compounds 315 have been prepared. ${ }^{188}$

R $\quad \mathrm{H}$ Me Br I
Yield (\%) $86 \quad 40 \quad 31 \quad 33$

5-Fluorothiouracil 316 adds to the compound $\mathbf{1}$ in the presence of triethylamine hydrochloride in boiling acetone giving 5-fluoro-1-(tetrahydrofuran-2-yl)thiouracil 317 in 65% yield. ${ }^{189}$

A method for the synthesis of 3-[4-(5-fluorouracil-1-yl)tetra-hydrofuran-3-yl]tetrahydrofuran 318 (yield 16%) has been patented. ${ }^{190}$ The method involves the reaction of the dihydrofuran $\mathbf{1}$ with the bis-ether $\mathbf{3 1 3}\left(\mathrm{R}=\mathrm{F}, \mathrm{R}^{1}=\mathrm{SiMe}_{3}\right)$ in the presence of aluminium chloride followed by treatment of the reaction product with water at $\mathrm{pH} 4 .{ }^{190}$

$$
\mathbf{1}+\mathbf{3 1 3}\left(\mathrm{R}=\mathrm{F}, \mathrm{R}^{1}=\mathrm{SiMe}_{3}\right) \xrightarrow{\frac{1 . \mathrm{AlCl}_{3}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, 85^{\circ} \mathrm{C}, 4 \mathrm{~h}}{2 . \mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}, 80{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}}}
$$

2-Morpholinotetrahydrofuran has been obtained by the addition of morpholine to the compound 1 in the presence of the $\operatorname{Pd}(\mathrm{SCN})_{2} / \mathrm{P}(\mathrm{OPh})_{3}$ catalyst at $20^{\circ} \mathrm{C}$ for $15 \mathrm{~h} .{ }^{191}$

2-Nitroimidazole adds to the compound $\mathbf{1}$ in the presence of toluene-p-sulfonic acid. ${ }^{192}$

The addition of methyl 5-cyanomethylimidazole-4-carboxylate di(p-nitrophenyl) phosphate to 2,3-dihydrofuran 1 on heating in an autoclave occurs non-regioselectively and gives two compounds 319 and 320 (yields 50% and 20%). ${ }^{193}$

2-(1,2,4-Triazol-1-yl)tetrahydrofuran has been prepared in 90% yield by the reaction of the dihydrofuran 1 with 1,2,4-triazole in the presence of $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{H}$ in DMF. ${ }^{194}$

2-(Benzotriazol-1-yl)tetrahydrofuran has been obtained in a quantitative yield by refluxing the compound $\mathbf{1}$ with benzotriazole in tetrachloromethane for $5 \mathrm{~h} .{ }^{195}$

Purine derivatives 321 containing substituents in the 6-position have been made to react with dihydrofuran 1 in the presence of organic sulfonic acids; this reaction afforded addition products 322. ${ }^{196-198}$

322

R	R^{\prime}	Time / h	Yield (\%)	Ref.
	4-MeC6 H_{4}	24	86	196
-SMe	4-MeC66 H_{4}	12	71.4	197
	Et	12	31	198
$-\mathrm{NH}_{2}$	Et	12	28	198

2,6-Dichloropurine adds to the dihydrofuran $\mathbf{1}$ in the presence of toluene- p-sulfonic acid to give 2,6-dichloro-9-(tetrahydro-furan-2-yl)-9H-purine $\mathbf{3 2 3}$ in 88% yield. ${ }^{199}$

By the reaction of 2-benzyloxymethyl-2,3-dihydrofuran 324 with 6-(trimethylsilylamino)purine at ambient temperature in the presence of tin(IV) chloride, compound $\mathbf{3 2 5}$ has been synthesised in 53% yield. ${ }^{200}$

Refluxing of the compound 1 with 1-bromopyrrolidine in tetrachloromethane leads to 3-bromo-2-pyrrolidinotetrahydrofuran 326 in 29% yield. 201

A fairly complex picture has been observed when 2,3-dihydrofuran 1 has been introduced in the reaction with 1 -substituted benzotriazole derivatives.

When the enol ether $\mathbf{1}$ is heated with 1-pyrrolidinomethylbenzotriazole 327 in the presence of toluene- p-sulfonic acid in a sealed tube, a mixture of two pairs of diastereomers 328a,b (yields 19\% and 24%) and $\mathbf{3 2 9 a}, \mathrm{b}$ (yields 3% and 53%) is formed. ${ }^{202}$

The reaction of 2,3-dihydrofuran 1 with benzotriazole derivatives $\mathbf{2 3 0}$ under the same conditions gives rise to the normal addition product as a mixture of four isomers $(2 R, 3 S, 6 R)-331 \mathbf{a}$, $(2 S, 3 S, 6 R)$-331b, $(2 R, 3 R, 6 R)$-331c, and $(2 S, 3 R, 6 R)$-331d. ${ }^{202}$

331a

331c

331b

331d

A mixture of four isomers of compound $\mathbf{3 3 2}$ has been obtained by heating the dihydrofuran 1 with 1-(α-ethoxybenzyl)benzotriazole $\mathbf{3 3 3}$ in a sealed tube. ${ }^{203}$

Tetrahydrofuran derivatives 334, containing an uracil residue in the 4 -position, have been synthesised by treating the adducts 335, prepared by the addition of phenylsulfenyl chloride to dihydrofurans $\mathbf{3 3 6}$, with N-trimethylsilyluracil in the presence of tin(IV) chloride. ${ }^{204}$

$\mathrm{R}=\mathrm{H}, \mathrm{CH}_{2} \mathrm{OSiPh}_{2} \mathrm{Bu}^{\mathrm{t}}$.

The reaction of 2,3-dihydrofuran with tetrahydrothiophene and thionyl chloride in sulfur dioxide has led to salt 337, which was converted into the chloride of the hydroxy-derivative $\mathbf{3 3 8}$ through the action of water; the compound 338 was characterized as the corresponding picrylsulfonate (yield 19.5\%). ${ }^{205}$

4-Formylpyridine oxime reacts with the compound 1 and bromine in THF to give the pyridinium salt 339 (yield 74\%). ${ }^{206}$

A similar interaction of pyridine derivatives 340 with halogens and the dihydrofuran 1 resulted in the formation of salts $\mathbf{3 4 1} .^{206}$

X	R	R^{\prime}
Cl	H	H
Br	$\mathrm{CH}=\mathrm{NOH}$	H
I	Me	H

References

1. H Kroper, in Methoden Organischen Chemie (Houben-Weyl)Vol. 6/3 (Eds E Muller, G Thieme) (Stuttgart, 1965) p. 677
2. A R Katritzky, Ch W Rees (Eds), in Comprehensive Heterocyclic Chemistry Vol. 4 (Oxford: Pergamon Press, 1984) p. 653
3. J C Anderson, D G Lindsay, C B Reese Tetrahedron 502091 (1994)
4. E V Dehmlow, K Franke Liebigs Ann. Chem. 1456 (1979)
5. M Christl, M Braun Chem. Ber. 1221939 (1989)
6. R Paul, S Tchelitcheff C.R. Hebd. Seances Acad. Sci. 2442806 (1957)
7. G Maas, Th Werle, M Alt, D Mayer Tetrahedron 49881 (1993)
8. K Schrank, A-M A A Wahab, P Eigen, J Lager Tetrahedron 456667 (1989)
9. S W Baertschi, K D Raney, M P Stone, Th M Harris J. Am. Chem. Soc. 1107929 (1988)
10. R Huisgen, G Steiner Tetrahedron Lett. 3763 (1973)
11. S Fries, K Gollinck Angew. Chem. 92848 (1980)
12. A G Griesbeck, S Stadtmüller, H Busse, G Bringmann, J Buddrus Chem. Ber. 125933 (1992)
13. G Kaupp, M Stark Chem. Ber. 1142217 (1981)
14. K S Nikolaou, C-K Hwang, M E Duggan, K B Reddy Tetrahedron Lett. 281501 (1987)
15. K Gollinck S Fries Angew. Chem. 92848 (1980)
16. L Fitjer, U Kliebisch, D Wehle, S Modaressi Tetrahedron Lett. 23 1661 (1982)
17. R Huisgen, L A Feiler, P Otto Chem. Ber. 1023405 (1969)
18. R Huisgen, L A Feiler, P Otto Tetrahedron Lett. 4485 (1968)
19. R Huisgen, L A Feiler, P Otto Chem. Ber. 1023444 (1969)
20. P Duperrouzel, E Lee-Puff Can. J. Chem. 5851 (1980)
21. S Naidorf-Meir, A Hassner J. Org. Chem. 575102 (1992)
22. U Schubert, J Knor, H Höring J. Organomet. Chem. 355243 (1988)
23. J Knor, U Schubert, J. Organomet. Chem. 373203 (1989)
24. D Agathocleous, G Cox, M I Page Tetrahedron Lett. 271631 (1986)
25. G Lowe, S Swan J. Chem. Soc., Perkin Trans. 1391 (1985)
26. R Terlinden, W Boland, L Jaenicke Helv. Chim. Acta 66466 (1983)
27. E Lee-Ruff, Y-Sh Chung J. Heterocycl. Chem. 231551 (1986)
28. J Mattay, J Runsink, R Winkler Tetrahedron 435781 (1987)
29. A Gilbert, P Heath, A Kashoulis-Koupparis, G C R Ellis-Davies, S M Firth J. Chem. Soc., Perkin Trans. 131 (1988)
30. T Sano, M Hirose, Yo Horiguchi, H Takayanagi, H Ogura, Yo Tsuda Bull. Chem. Soc. Jpn. 354730 (1987)
31. T Shimo, T Iwakiri, K Somekawa, T Suishu J. Heterocycl. Chem. 29 199 (1992)
32. R W M Aben, R Smit, J W Scheeren J. Org. Chem. 52365 (1987)
33. H A J Carless, D J Haywood J. Chem. Soc., Chem. Commun. 1076 (1980)
34. H Itokawa, H Matsumoto, T Oshima, S Mihashi J. Pharm. Soc. Jpn. 107767 (1987); Ref. Zh. Khim. 9 Zh 29 (1988)
35. A G Griesbeck, S Stadtmüller J. Am. Chem. Soc. 1121281 (1990)
36. A G Griesbeck, S Stadtmüller Chem. Ber. 123357 (1990)
37. A G Griesbeck, H Mauder, K Peters, E-M Peters, H G Schnering Chem. Ber. 124407 (1991)
38. E A Karakhanov, S V Lysenko, N F Kovaleva, L Yu Brezhnev, V G Glukhovtsev, R A Karakhanov Vestn. Mosk. Univ., Ser. 2, Khim. 23159 (1982) ${ }^{\text {a }}$
39. V P Rao, V Ramamurthy J. Org. Chem. 53327 (1988)
40. W Adam, K Knutzen-Mies J. Org. Chem. 531492 (1988)
41. R L Elliott, A K Takle, J W Tyler, J White J. Org. Chem. 58 6954 (1993)
42. H M L Davies, B Hu Tetrahedron Lett. 33453 (1992)
43. H M L Davies, B Hu, P R Bruzinski J. Org. Chem. 594535 (1994)
44. M C Pirrung, J Zhang, A T McPhail J. Org. Chem. 566269 (1991)
45. G A Kraus, J O Nagy, J De Lano Tetrahedron 412337 (1985)
46. M Newcomb, M U Kumar Tetrahedron Lett. 311675 (1990)
47. K Burger, F Kein Liebigs Ann. Chem. 853 (1982)
48. M Abdul-Ghani, A E Tipping J. Fluorine Chem. 635 (1993); Chem. Abstr. 120106 849v (1994)
49. S J Clarke, D E Davies, Th L Gilchrist J. Chem. Soc., Perkin Trans. 11803 (1983)
50. J M Mellor, Sh Mohamed Tetrahedron Lett. 327107 (1991)
51. G A Kraus, B E Johnston, J M Applegate J. Org. Chem. 565688 (1991)
52. A Takuwa, M Samikawa Chem. Lett. 9 (1989)
53. M Kotera, K Ishii, O Tamura, M Sakamoto J. Chem. Soc., Perkin Trans. 12353 (1994)
54. L Fisera, M Dandarova, J Kovac, A Gaplovsky, J Patus, I Goljer Collect. Czech. Chem. Commun. 47523 (1982)
55. T Iwashita, T Kusumi, H Kakisawa Chem. Lett. 1337 (1979)
56. R Paul, S Tchelitsheff Bull.Chim. Soc. Fr. 2215 (1962)
57. V Oremus, L Fisera, L Stibranyi Collect. Czech. Chem. Commun. 521773 (1987)
58. V Oremus, L Fisera, H-J Timpe Collect. Czech. Chem. Commun. 52 2953 (1987)
59. P Caldirola, M DeAmici, C DeMicheli, P A Wade, D T Price, J F Bereznak Tetrahedron 425267 (1986)
60. L Fisera, L Stibranyi A Matusova J Oravkin Chem. Pap., Chem. Zvesti 40693 (1986)
61. L Jaroskova, L Fisera Chem. Pap., Chem. Zvesti 46238 (1992)
62. K Harada, K Eisuke, Sh Zen Chem. Pharm. Bull. 283296 (1980)
63. L Fisera, L Stibranyi, V Oremus Chem. Zvesti 38557 (1984)
64. P Caramella, T Bandiera, P Grünanger, F M Albini Tetrahedron 40441 (1984)
65. E Jedlovska, L Fisera, J Kovac Chem. Pap., Chem. Zvesti 42823 (1988)
66. E C Taylor, P S Ray J. Org. Chem. 561813 (1991)
67. G A Kraus, K Landgrebe Tetrahedron Lett. 253939 (1984)
68. G A Kraus, K Landgrebe Tetrahedron 414039 (1985)
69. Zh Li, A Mori, H Takeshita, Yo Nagano Chem. Express 7213 (1992)
70. T Shimo, F Muraoka, K Somekawa Nippon Kagaku Kaishi 1765(1989); Ref. Zh. Khim. 8 Zh 229 (1990)
71. I E Marko, G R Evans Synlett 431 (1994)
72. I E Marko, G R Evans Tetrahedron Lett. 352767 (1994)
73. I E Marko, G R Evans Tetrahedron Lett. 352771 (1994)
74. I E Marko, G R Evans, J-P Dellercq Tetrahedron 504557 (1994)
75. F Thalhammer, U Wallfahrer, J Sauer Tetrahedron Lett. 316851 (1990)
76. P I VanBroeck, Ph E VanDoren, S M Toppet, G J Hoornaert J. Chem. Soc., Perkin Trans. 1415 (1992)
77. D McLeod, D Moorcroft, P Quayle, M R J Dorroty, J M Malone, G M Davies Tetrahedron Lett. 316077 (1990)
78. T Kametani, H Takeda, Yu Suzuki, H Kasai, T Honda Heterocycles 243385 (1986)
79. L S Povarov, V I Grigas, R A Karakhanov, B M Mikhailov Izv. Akad. Nauk SSSR, Ser. Khim. 179 (1964) ${ }^{\text {b }}$
80. E F Elslager, D F Worth J. Heterocycl. Chem. 6597 (1969)
81. D F Worth, E F Elslager, S C Perricone J. Heterocycl. Chem. 11 69 (1974)
82. S C Perricone, E F Elslager, D F Worth J. Heterocycl. Chem. 7 135 (1970)
83. S C Perricone, D F Worth, E F Elslager J. Heterocycl. Chem. 7 537 (1970)
84. D F Worth, S C Perricone, E F Elslager J. Heterocycl. Chem. 7 1353 (1970)
85. L S Povarov Khim. Geterotsikl. Soedin. 1694 (1979) ${ }^{\text {c }}$
86. E Borrione, M Prato, G Scorrano, M Stivanello, V Lucchini J. Heterocycl. Chem. 251831 (1988)
87. T Kametani, H Takeda, Yu Suzuki, T Honda Synth. Commun., 15 499 (1985)
88. T Kametani, H Furuyama, Yu Fukuoka, H Takeda, Yu Suzuki, T Honda J. Heterocycl. Chem. 23185 (1986)
89. J Cabral, P Laszlo, M T Montanfier Tetrahedron Lett. 29547 (1988)
90. V Lucchini, M Prato, G Scorrano, M Etivanello, G Valle J. Chem. Soc., Perkin Trans. 1259 (1992)
91. R B Gupta, R W Franck Synlett 355 (1990)
92. A M A Gonsalves, T M V D P Melo, Th L Gilchrist Tetrahedron 495277 (1993)
93. A Padwa, Ph Eisenbarth Tetrahedron 41283 (1985)
94. L F Tietze, K-H Glüsenkamp, K Harms, G Remberg Tetrahedron Lett. 231147 (1982)
95. M Matsumoto, K Kudora Angew. Chem. 94376 (1982)
96. K Paul, S Tchelitcheff Bull. Chim. Soc. Fr. 672 (1954)
97. J W Scheeren, F J M Dahmen, C G Bakker Tetrahedron Lett. 2925 (1979)
98. L F Tietze, K-H Glüsenkamp Angew. Chem. 95901 (1983)
99. H M R Hoffmann, A Gassner, U Eggert Chem. Ber. 1242475 (1991)
100. A Weichert, H M R Hoffmann J. Org. Chem. 564098 (1991)
101. M Hojo, R Masuda, E Okada Synthesis 215 (1989)
102. M Hojo, R Masuda, E Okada Synthesis 347 (1990)
103. B Haag-Zeino, M E Maier, R R Schmidt Chem. Ber. 1201505 (1987)
104. A M Celli, M Scotton, A Sega Tetrahedron 485883 (1992)
105. E Wada, Sh Kanemasa, O Tsuge Chem. Lett. 675 (1989)
106. E Vilsmaier, S Weber, J Weidner J. Org. Chem. 524921 (1987)
107. M Krause, H M R Hoffmann Synlett 485 (1990)
108. P D Croce, R Ferraccioli, C L Rosa Gazz. Chim. Ital. 12335 (1993)
109. H K Hall, D L Miniutti Tetrahedron Lett. 25943 (1984)
110. H W Heine, B J Barchiesi, E A Williams J. Org. Chem. 492560 (1984)
111. Ya Tohda, N Yamawaki, H Matsui, T Kawashima, M Ariga, Yu Mori Bull. Chem. Soc. Jpn. 61461 (1988)
112. Th V Lee, K Ellis Tetrahedron Lett. 303555 (1989)
113. Th L Gilchrist, G M Iskander, A K Yagoub J. Chem. Soc., Perkin Trans. 12769 (1985)
114. H Hoberg, M Nohlen J. Organomet. Chem. 412225 (1991)
115. A W H Jans, B VanArkel, J VanDijk-Knepper, H Mioch, J Cornelisse Tetrahedron 405071 (1983)
116. A Gilbert, P Hearth Tetrahedron Lett. 285909 (1987)
117. H Griengl, G Prischl, A Bleikolm Liebigs Ann. Chem. 400 (1979)
118. H Griengl, A Bleikolm Tetrahedron Lett. 2565 (1975)
119. BRD P. 2609 601; Chem. Abstr. 851927 84h (1976)
120. I I Grandberg, T P Moskvina Khim. Geterotsikl. Soedin. 1366 (1972) ${ }^{\text {c }}$
121. Ch A Demerson, L G Humber, A H Philipp J. Med. Chem. 19391 (1976)
122. US P. 4585 877; Chem. Abstr. 105115 045x (1986)
123. L G Humber, E Ferdinandi, Ch A Demersen, S Ahmed, U Shah, D Mobilio, J Sabatucci, B DeLange, F Labbadia, Ph Hughes, J De Virgilio, G Neumann, Th T Chau, B M Weichman J. Med. Chem. 311712 (1988)
124. US P. 4822 781; Chem. Abstr. 111115 161f (1989)
125. B M McKittrick, A Failli, R J Steffan, R M Soll, Ph Hughes, J Schmidt, A A Asselin, C C Shaw, R Noureldin, G Gavin J. Heterocycl. Chem. 272151 (1990)
126. J D White, K M Yager, T Yakura J. Am. Chem. Soc. 1161831 (1994)
127. F Boberg, A Marei, H Stegemeyer Liebigs Ann. Chem. 665110 (1962)
128. J Lehmann, U Kraatz, F Korte Chem. Ber. 1061099 (1973)
129. R A Karakhanov, M M Vartanyan, T Yu Solov'eva, V A Zefirova Khim. Geterotsikl. Soedin. 133 (1984) ${ }^{\text {c }}$
130. S Fritschi, A Vasella Helv. Chim. Acta 742024 (1991)
131. A Colla, M A Martins, G Clar, S Krimmer, P Fischer Synthesis 483 (1991)
132. J-P Girault, P Seribe, G Dana Bull. Soc. Chim. Fr. 2279 (1971)
133. Yo Kuwayama Yakugaku Zasshi 801487 (1960); Chem. Abstr. 555 482f (1961)
134. S Stowell, M A Polito J. Org. Chem. 572195 (1992)
135. S Ramaswamy, A C Oehlschloger Tetrahedron 471157 (1991)
136. J R Falck, S J Wittenberger, D Rajapakka, Ch Mioskowski, B Boubia J. Chem. Soc., Perkin Trans. 1413 (1990)
137. H Kisch, W Hetterich, G Twardzik, in Proceedings of the 7th International Symposium on Photochemistry and Photophysics, 1987 p. 301; Chem. Abstr. 10983 074v (1988)
138. H-Ch Zhang, G D Daves J. Org. Chem. 574690 (1992)
139. H-Ch Zhang, G D Daves J. Org. Chem. 582557 (1993)
140. Ph Kocienski, Ya Fall, R Whitby J. Chem. Soc., Perkin Trans. 1 841 (1989)
141. Jpn. Appl. 02-233 673; Chem. Abstr. 114122 031d (1991)
142. R S Boyce, R M Kennedy Tetrahedron Lett. 355133 (1994)
143. J-M Poirier, G Dujardan Tetrahedron Lett. 283337 (1987)
144. P Duhamel, A Deyine, G Dujardin, G Pie, J M Poirier J. Chem. Soc., Perkin Trans. 12103 (1995)
145. D Craig, V R N Munasinghe Tetrahedron Lett. 33663 (1992)
146. Jpn. Appl. 77-139 078; Chem. Abstr. 88121 232c (1978)
147. H Nomura, Yo Yoshioka, I Minami Chem. Pharm. Bull. 27899 (1979)
148. BRD P. 2650 918; Chem. Abstr. 87135 382t (1977)
149. Jpn. Appl. 77-118 477; Chem. Abstr. 88105 718k (1978)
150. BRD P. 2656 604; Chem. Abstr. 87135 397b (1977)
151. Jpn. Appl. 79-05 986; Chem. Abstr. 9020 4136s (1979)
152. Jpn. Appl. 78-21 178; Chem. Abstr. 8924 350c (1979)
153. Jpn. Appl. 77-125 177; Chem. Abstr. 88136 653q (1978)
154. Jpn. Appl. 78-105 483; Chem. Abstr. 9023 106m (1979)
155. Jpn. Appl. 79-27 579; Chem. Abstr. 9120 539q (1979)
156. Jpn. Appl. 79-27 583; Chem. Abstr. 915 245x (1979)
157. Jpn. Appl. 79-27 584; Chem. Abstr. 915 246y (1979)
158. Jpn. Appl. 79-27 585; Chem. Abstr. 915 247z (1979)
159. Jpn. Appl. 78-98 979; Chem. Abstr. 9072 224g (1979)
160. Jpn. Appl. 78-108 987; Chem. Abstr. 90137 855k (1979)
161. Jpn. Appl. 79-98 784; Chem. Abstr. 92146 796k (1980)
162. Jpn. Appl. 79-52 086; Chem. Abstr. 91175 381f (1979)
163. Jpn. Appl. 62-22 780; Chem. Abstr. 106176 418p (1987)
164. Jpn. Appl. 61-112 073; Chem. Abstr. 10618 602q (1987)
165. Jpn. Appl. 62-54 107; Chem. Abstr. 10954 788f (1988)
166. Jpn. Appl. 79-98 785; Chem. Abstr. 95146 795j (1980)
167. Jpn. Appl. 78-98 980; Chem. Abstr. 90 72225h (1979)
168. Jpn. Appl. 78-119 880; Chem. Abstr. 90204 125n (1979)
169. Jpn. Appl. 77-139 079; Chem. Abstr. 88136 654r (1978)
170. Jpn. Appl. 77-85 180; Chem. Abstr. 87202 041w (1977)
171. BRD P. 2650 918; Chem. Abstr. 87135 382t (1977)
172. Jpn. Appl. 78-127 485; Chem. Abstr. 90137 853h (1979)
173. Jpn. Appl. 78-130 678; Chem. Abstr. 90152 227a (1979)
174. Jpn. Appl. 78-119 881; Chem. Abstr. 90204 126p (1979)
175. Jpn. Appl. 78-46 985; Chem. Abstr. 89109 567d (1978)
176. Jpn. Appl. 78-4 0781; Chem. Abstr. 89109 568e (1978)
177. BRD P. 2744 956; Chem. Abstr. 8924 357k (1978)
178. Jpn. Appl. 78-132 580; Chem. Abstr. 90121 640a (1979)
179. Jpn. Appl. 53-68791; Ref. Zh. Khim. 10 O 121P (1979)
180. Jpn. Appl. 77-42 887; Chem. Abstr. 87135 385w (1977)
181. USSR P. 721439 SSSR; Ref. Zh. Khim. 21 O 75P (1980)
182. Jpn. Appl. 78-68 790; Chem. Abstr. 89197 591k (1978)
183. Jpn. Appl. 77-108 986; Chem. Abstr. 88136 647r (1978)
184. Jpn. Appl. 78-130 677; Chem. Abstr. 90152 228b (1979)
185. A S Jones, M J McClean, M J Slater, R T Walker J. Chem. Soc., Perkin Trans. 1457 (1987)
186. Jpn. Appl. 79-103 880 ; Chem. Abstr. 92128 954f (1980)
187. Jpn. Appl. 79-41 882; Chem. Abstr. 91123 750f (1979)
188. C W Noell, C C Cheng J. Heterocycl. Chem. 525 (1968)
189. Jpn. Appl. 79-977; Chem. Abstr. 9276 536z (1980)
190. Jpn. Appl. 78-144 585; Chem. Abstr. 91205534 (1979)
191. Th Baid, J Jenck, Ph Kalck J. Chem. Soc., Chem. Commun. 1552 (1992)
192. WO PCT 8302 774; Chem. Abstr. 1006 514a (1984)
193. Jpn. Appl. 78-12 887; Chem. Abstr. 88197 581g (1978)
194. F Dallacker, K Minn Chem.-Ztg. 110101 (1986)
195. A R Katritzky, S Rachwal, B Bachwal J. Chem. Soc., Perkin Trans. 11717 (1990)
196. A Mishra, R Pratap, D S Bhakuni Indian J. Chem. 26B 847 (1987)
197. Sh I Khan, A Mishra, P Y Guru, R Pratap, D S Bhakuni Indian J. Chem. 29B 40 (1990)
198. R D Thompson, Sh Secunda, J W Daly, R A Olsson J. Med. Chem. 342877 (1991)
199. A Hasan, R Pratap, C X Georg, D C Bhakuni Indian J. Chem. 25B 1070 (1986)
200. Jpn. Appl. 02-229 192; Chem. Abstr. 114102 709c (1991)
201. M M Paul, S Tchelitsheff C.R. Herb. Seances Acad. Sci. 2361968 (1953)
202. A R Katritzky, S Rachwal, B Rachwal, P J Steel J. Org. Chem. 57 4932 (1992)
203. A R Katritzky, S Rachwal, B Rachwal, P J Steel J. Org. Chem. 57 4925 (1992)
204. H Kawakami, T Ebata, K Koseki, K Okano, K Matsumoto, H Matsushita Heterocycles 36665 (1993)
205. D L Schmidt, J P Heeschen, Th S Klinger, L P McCarty J. Org. Chem. 502840 (1985)
206. Czech. P. 184 004; Ref. Zh. Khim. O 89 (1981)
```
a - Moscow Univ. Bull. (Engl. Transl.)
b — Russ. Chem. Bull.
c - Chem. Heterocycl. Compd. (Engl. Transl.)
```


[^0]: M-G A Shvekhgeimer A N Kosygin Moscow State Textile Academy, ul. Malaya Kaluzhskaya 1, 117918 Moscow, Russian Federation. Fax (7-095) 95214 40. Tel. (7-095) 9553596

