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Abstract

Transgenic tobacco plants expressing green
fluorescent protein (GFP) under the control of the
companion cell-specific promoter, AtSUC2, were
parasitized by the holoparasite Cuscuta reflexa
(dodder). GFP, moving in the translocation stream of
the host, was transferred to the Cuscuta phloem via
the absorbing hyphae of the parasite. An identical
pattern of transfer was observed for the phloem-
mobile probe, carboxyfluorescein. Following uptake
by the parasite, GFP was translocated and unloaded
from the Cuscuta phloem in meristematic sink
tissues. Contrary to published data, these observa-
tions suggest the presence of a functional symplastic
pathway between Cuscuta and its hosts, and demon-
strate a considerable capacity for macromolecular
exchange between plant species.

Key words: Cuscuta, green fluorescent protein, macro-
molecular transport, Nicotiana, plasmodesmata, symplastic
transport.

Introduction

The parasitic relationship of Cuscuta (dodder) with its
hosts has been the subject of numerous investigations
(De Bock and Fer, 1992; Dorr, 1968; Haupt and Neumann,
1996; Israel et al., 1980; Jacob and Neumann, 1968; Jeschke
and Hilpert, 1997; Rothe et al., 1999; Schumacher, 1934).
Cuscuta has little photosynthetic activity and draws most
of its nutrients from the host. For example, in parasitized

faba bean plants Cuscuta is an extremely powerful
competing sink for assimilates, and is capable of
completely preventing fruit set and pod development
(Wolswinkel, 1974).

During the infection process Cuscuta produces an
haustorium, a highly elaborate adventitious root
(Dawson et al., 1994) that penetrates the host tissue.
From the tip of the haustorial cone, ‘searching hyphae’
grow extracellularly through host tissues in a manner
similar to pollen tubes. On reaching individual sieve
elements of the phloem the terminal hyphae -cells
differentiate into ‘absorbing hyphae’ (Dorr, 1969) which
produce finger-like protrusions that surround the sieve
element (Dorr, 1972). The conversion of a searching
hypha into an absorbing hypha starts at the point of
host sieve-tube attachment and advances towards the
haustorial organ, eventually connecting with the haustorial
sieve elements differentiating in the opposite direction.
On the inside of the absorbing hypha cell the wall is
thrown into numerous infoldings reminiscent of transfer
cells while the cytoplasm develops a conspicuous smooth
endoplasmic reticulum network (Dorr, 1990) resembling
that found in the SE.

Although plasmodesmata occur between searching
hyphae and parenchyma elements of the host cortex
(Dorr, 1969), both plasmodesmata and sieve pores are
thought to be absent between absorbing hyphae and sieve
elements (Dorr, 1990), necessitating apoplastic transfer of
solutes between the phloem systems of the host and the
parasite at this interface (Tsivion, 1978; Wolswinkel,
1978). This transfer has been suggested to involve an
active mechanism of solute release (Jeschke ez al., 1994,
Wolswinkel, 1974).
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Given the apparent symplastic isolation of host sieve
elements and absorbing hyphae, it appears paradoxical
that Cuscuta is an effective vector for the transfer of
several viruses (Bennett, 1944; Hosford, 1967; Roos and
Aldrich, 1988; Schmelzer, 1958) and phytoplasmas
(Heintz, 1989; Macrone et al., 1999). These studies
suggest that a symplastic link occurs at some point
in the host-Cuscuta interface to allow the passage of
pathogenic RNAs, or RNA-protein complexes, from the
phloem of one species to another.

Recently it was shown that GFP, synthesized in source
tobacco companion cells under the control of the
Arabidopsis SUC2 promoter, entered sieve elements and
was translocated to, and unloaded within, sink tissues
(Imlau et al., 1999; Oparka et al., 1999). In the transport
phloem of the stem, in which the SE-CC complexes are
virtually symplastically isolated, the GFP was restricted
to the phloem (Oparka et al., 1999). As Nicotiana
tabacum can be parasitized effectively with Cuscuta
(Bennett, 1944), the authors investigated whether
phloem-mobile GFP could be transferred to the phloem
of Cuscuta at the sites of haustorial attachment. Here,
an extensive transfer of GFP from host to parasite was
demonstrated and it was shown that the protein is
unloaded in sink tissues of Cuscuta. The pattern of GFP
transfer was identical to the movement of the low-
molecular-weight probe carboxyfluorescein, indicating
a common symplastic pathway of transfer for both
solutes and macromolecules. The data demonstrate
a considerable capacity for macromolecular exchange
between holoparasitic angiosperms and their hosts.

Materials and methods

Plant material

Plants of Nicotiana benthamiana and transgenic plants of
Nicotiana tabacum expressing GFP under the control of the
Arabidopsis thaliana sucrose transporter promoter (A4:SUC2-
GFP, see Imlau et al.,, 1999) were grown from seeds in a
heated glasshouse and used for experiments when the plants
were between 28 and 56-d-old. Cuscuta reflexa was cultivated on
Vicia faba as a host under the same greenhouse conditions with
15 h light and 9 h darkness.

For experiments, Cuscuta shoots of 30-35 cm length were cut
from the stock culture and carefully twisted around the stems or
petioles of older source leaves. Parasitized plants were examined
16 d after infection with Cuscuta.

Phloem transport

Phloem transport between host and parasite was imaged on
intact plants using the fluorescent probe carboxyfluorescein
diacetate (CFDA), exactly as described earlier (Roberts et al.,
1997). The plants were imaged after translocation in the light for
between 1 h and 1.5 h.

Sectioning

Prior to confocal imaging parasitized petioles were cut free-hand
into longitudinal or transverse sections through the middle of
the haustorium. The sections were then mounted immediately in
silicon oil and covered with a cover slip.

Confocal laser scanning microscopy (CLSM)

To image GFP, and to follow the movement of the fluorescent
probe CFDA, a Bio-Rad MRC 1000 (Bio-Rad, Hemel
Hempstead, UK) confocal laser scanning microscope (CLSM)
was used. Both probes were excited by the 488 nm line produced
by a 25 mW argon laser.

The individual petiole sections were ‘mapped’ using a Nikon
X2 long working distance lens, and the images subsequently
reconstructed using Photoshop® software (Adobe, Mountain
View, CA).

Results and discussion

In the parasitic interaction between Cuscuta and its hosts,
elongated ‘searching hyphae’ of the parasite penetrate the
cortex and make contact with the host phloem. These
‘absorbing hyphae’ are intimately associated with sieve
tubes, forming finger-like wall extensions that wrap
around individual sieve elements (Dorr, 1972). When
transgenic tobacco plants expressing AtSUC2-GFP were
parasitized with Cuscuta, extensive movement of GFP
was observed between the phloem of tobacco and that of
Cuscuta at 14-16 d after attachment of the parasite
(Fig. 1a, b). In addition, GFP was detected in the
absorbing hyphae cells of the haustorial complex
(Fig. 1b). Longitudinal sections of Cuscuta stem, taken
above the point of attachment of the haustorium,
revealed GFP to be restricted mainly to the phloem and
to a limited extent to the neighbouring parenchyma
tissues of the Cuscuta stem (Fig. 1d). Close to the apical
meristem of Cuscuta considerable unloading of GFP was
apparent, the protein moving from cell to cell throughout
developing leaf primordia (Fig. 1f).

When GFP is expressed in source companion cells of
tobacco or Arabidopsis, it enters sieve elements and is
translocated to sink regions of the plant where it is
unloaded symplastically (Imlau et al., 1999; Oparka et al.,
1999). As the plasmodesmata in sink regions appear to be
modified to allow the passage of small macromolecules
(Fisher and Cash Clark, 2000; Oparka and Santa Cruz,
2000), the symplastic unloading of GFP in sink tissues of
Cuscuta was not unexpected.

When the fluorescent probe CF was applied to source
host leaves in ester form, the impermeant moiety was
translocated to sink tissues, as shown previously
(Knoblauch and Van Bel, 1998; Roberts et al., 1997;
Wright and Oparka, 1996). In host plants parasitized by
Cuscuta, the dye was unloaded extensively at the site of
haustorial attachment and subsequently entered the stem
phloem of Cuscuta (Fig. lc, e). When the haustorial
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Fig. 1. (a) Transmitted light image of a cross section of a petiole from an AtSUC2-GFP Nicotiana tabacum source-leaf petiole, parasitized by
Cuscuta reflexa. The haustorium of the parasite is connected to the central vascular bundle of the host. (b) CLSM image of the same section, showing
that GFP has been transferred from the phloem of the central bundle of the host into the Cuscuta phloem via the haustorium of the parasite. In
the small (unparasitized) lateral bundle of the host (dart) GFP is restricted to the phloem. Scale=1 mm. (c) CLSM image of a longitudinal section
of stem parasitized by Cuscuta reflexa. CF is being transferred from the host phloem to the Cuscuta phloem via the absorbing hyphae at the tip
of the haustorial complex. Scale=0.5 mm. (d) CLSM image of a longitudinal section of a Cuscuta shoot that was parasitizing an AtfSUC2-GFP
transgenic Nicotiana tabacum. GFP is transported exclusively within the phloem of the parasite. Scale =0.5 mm. (¢) CLSM image of a cross section of
host stem parasitized by Cuscuta reflexa. CF, translocated within the host phloem, is transferred into the absorbing hyphae of the Cuscuta
haustorium. The xylem shows autofluorescence. Scale =0.5 mm. (f) CLSM image of a longitudinal section of the shoot tip of a Cuscuta reflexa plant
that was parasitizing a transgenic AtSUC2-GFP Nicotiana tabacum plant. The image shows the unloading of GFP within the developing leaf
primordia of the parasite (darts). Scale=1 mm. C, Cuscuta reflexa; N, Nicotiana tabacum; P, phloem; Pa, parenchyma cell; X, xylem; ah, absorbing
hypha; h, haustorium.
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complex was examined in longitudinal section, dye could
be seen in the phloem of the host and also within the
connecting absorbing hyphae of the parasite (Fig. 1c).
A consistent feature was a lack of phloem labelling below
the point of attachment of Cuscuta, suggesting that the
translocating phloem of the host had been effectively
‘drained’ of solutes by the parasite (data not shown). In
transverse sections, individual cell-cell contacts between
the host SE-CC complexes and absorbing hyphae were
apparent (Fig. le). In such cases dye continuity was
apparent across the interface.

Because it is possible for some membrane-impermeant
dyes to cross membranes (Oparka, 1991), the observa-
tions of dye transfer were considered to be equivocal
evidence that a symplastic pathway was operating in
the exchange of solutes between host and parasite.
However, the unrestricted movement of GFP (27 kDa)
from tobacco to Cuscuta provides strong evidence for
a symplastic pathway between the absorbing hyphae
of Cuscuta and the SE-CC complexes of the host.
Ultrastructural studies of Cuscuta suggest that plasmo-
desmata are rare or absent at this interface (Dorr, 1972,
1990), making the extensive transfer of GFP observed
here appear unusual. In other holoparasites, such as
Orobanche, symplastic continuity is clearly established
between the phloem of the host and parasite by direct
linkage of sieve elements (Dorr and Kollmann, 1995). The
observation that phloem-mobile GFP can be transferred
from tobacco to Cuscuta suggests that a symplastic
pathway is most probably utilized in the transport of
macromolecules in this system. It seems likely that
viral RNA is also transferred to other plants via this
pathway (Bennett, 1944). While it remains possible that
sucrose may be retrieved from the apoplast by absorbing
hyphae (Jeschke et al., 1994; Wolswinkel, 1974), it seems
unlikely that an apoplastic step is involved in the
transport of GFP from the host SEs to the absorbing
hyphae of Cuscuta for a number of reasons. First, the
mature sieve elements of the host have a highly restricted
endomembrane system and lack the vesicular machinery
necessary to package and secrete GFP to the apoplast
(Oparka and Turgeon, 1999). Second, GFP was not
detected in the apoplast by confocal microscopy at any of
the stages of the host—parasite interaction. At present,
however, the possibility cannot be ruled out that the
adjoining membranes of host SEs and absorbing hyphae
are exceptionally permeable to a wide range of solutes
and proteins at this contact point.

Although solute exchange between plant hosts and
parasitic angiosperms has been studied extensively, little
attention has been paid to the capacity for macromolecu-
lar exchange between plants via parasitic plant vectors.
The capacity for GFP to exchange between Nicotiana and
Cuscuta suggests that a wide range of proteins might
exchange between plants of different species. The upper

size exclusion limit for transport of macromolecules
between Nicotiana and Cuscuta is currently being
investigated.
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