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Abstract: Tianeptine is a well-described antidepressant which has been shown to prevent 
stress from producing deleterious effects on brain structure and function. Preclinical 
studies have shown that tianeptine blocks stress-induced alterations of neuronal 
morphology and synaptic plasticity. Moreover, tianeptine prevents stress from impairing 
learning and memory, and, importantly, demonstrates memory-enhancing properties in the 
absence of stress. Recent research has indicated that tianeptine works by normalizing 
glutamatergic neurotransmission, a mechanism of action that may underlie its effectiveness 
as an antidepressant. These findings emphasize the value in focusing on the mechanisms of 
action of tianeptine, and specifically, the glutamatergic system, in the development of 
novel pharmacotherapeutic strategies in the treatment of depression. 
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1. Introduction 

Depression is a cause of significant distress and financial burden across the globe [1,2], and 
continued research assessing its etiology is essential to facilitate the development of better treatments 
for the disorder. Although considerable progress has been made in describing the physiological and 
behavioral sequelae that result from depression, the factors responsible for its development and 
maintenance remain largely unknown. A considerable proportion of what we know about the 
biological basis of this disorder has come about through studies examining pharmacological agents 
that treat it most effectively. Indeed, the dogmatic view that abnormally low levels of monoamine 
neurotransmitters result in depression developed out of the incidental finding that efficacious 
antidepressant agents, such as monoamine oxidase inhibitors and tricyclic antidepressants, 
substantially increased monoamine neurotransmitter levels [3]. Even today, the most frequently 
prescribed medications for depression are the selective serotonin reuptake inhibitors (SSRIs), whose 
primary mechanism of action involves increasing extracellular serotonin levels [4,5].  

Recent work has suggested that the widely held view that depression results from abnormally low 
levels of monoamine neurotransmitters is an oversimplification of a much more complex process, and 
that elevated monoamine levels provides only an indirect contribution to therapy for depressive 
symptoms [6–8]. Thus, antidepressant agents with a primary mode of action to increase monoamine 
neurotransmitter levels, such as the SSRIs, are effective in only a subset of people suffering from 
depression [9–11]. Moreover, SSRIs are typically used in a polypharmacy (multi-drug) approach to the 
treatment of depression, which suggests that the focus on the SSRI-based serotonergic component of 
depression is incomplete. It is therefore evident that mechanisms other than alterations of monoamine 
neurotransmitter levels are involved in the development and maintenance of depression. 

An alternative and well-established treatment for depression is tianeptine, a clinically effective 
antidepressant whose non-monoaminergic mechanism of action is quite unlike that of other 
pharmacological treatments for the disorder; tianeptine’s antidepressant effects primarily involve the 
modulation of glutamatergic neurotransmission and the modulation of the capacity for the brain to 
exhibit synaptic plasticity [9,12–17]. Tianeptine reduces depressive symptoms in individuals with mild 
to severe forms of the disorder, and unlike SSRI’s, tianeptine is effective with fewer side effects in a 
monotherapy approach [18–22]. Tianeptine’s effectiveness in treating depression is of clinical, as well 
as conceptual, significance. The contrast in mechanistic actions between tianeptine and other types of 
antidepressants serves as a challenge to the heuristic value of the monoamine hypothesis of the 
disorder [23,24].  

In this review, we have provided an update on research on stress, depression and neuroplasticity, and 
more specifically, we have described the influence of tianeptine on cognitive and physiological measures 
of brain function. In addition, we have integrated the literature on stress, memory and synaptic plasticity 
with our recent work on the enhancement of long-term hippocampus-dependent memory by acute 
administration of tianeptine. These findings are potentially relevant toward the amelioration of cognitive 
deficits and hippocampal pathophysiology which are endemic to depression [25–27]. 
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2. Stress, Neuroplasticity and Symptoms of Depression 

Two commonalities to almost all mood and anxiety disorders include alterations in neuroplasticity 
and stress as contributing factors [28–31]. Alterations in neuroplasticity involve structural and 
functional changes in how the brain processes information. It has been hypothesized that many of the 
behavioral symptoms of depression are manifested through changes in brain neurochemical levels that 
ultimately result in structural changes in brain regions that process emotional and cognitive information, 
including the hippocampus, prefrontal cortex (PFC) and amygdala [16,32,33]. The hippocampus is a 
medial temporal lobe structure which is important for declarative memory in humans [34,35] and spatial 
working memory in rodents [36–41]; the PFC is located in the anterior part of the frontal lobe and 
plays an important role in complex cognitive processes, such as planning, decision-making and 
behavioral flexibility [42]; and, the amygdala is an almond-shaped structure in the medial temporal 
lobe which is highly involved in emotion and memory [43–45].  

In support of the notion that depression involves alterations of neuroplasticity, studies have reported 
significant reductions of hippocampal and PFC volumes in depressed patients [46–48]. In addition, 
depressed individuals exhibit impaired performance on hippocampus- and PFC-dependent cognitive 
tasks, impairments that have been associated with reduced or abnormal activity in each of these 
respective brain regions while depressed patients were engaged in such tasks [49,50]. In contrast to the 
hippocampus and PFC, amygdala volume and activity are increased in depressed individuals, and with 
successful treatment, significantly decline [51–53]. Thus, depression is clearly associated with 
significant changes in brain structure and function, which may ultimately explain the expression of 
depression’s behavioral symptoms. 

It has been well-established that stress is a significant contributor to one’s likelihood of developing 
depression [54,55]. Thus, a major focus of preclinical researchers has been to define the physiological 
and behavioral alterations that result from stress and to ascertain how they can be prevented through 
pharmacological means. Animal models of stress provide unique advantages over studying humans 
with depression in that they afford researchers a greater amount of control over experimental variables, 
and they allow the investigators to assess neurobiological endpoints (e.g., neuron structure, cellular 
and molecular measures) that would be difficult, if not impossible, to assess in human patients. The 
models are also useful because once they reveal the physiological and behavioral effects that stress 
exerts on brain structure and function, investigators can use this information to develop novel 
pharmacological agents in alleviating such effects. Of course, researchers must exert caution when 
applying the findings from animal models to the human disorder. Animal models are not necessarily 
capable of modeling all of the core symptoms of depression, and those symptoms that can be modeled 
do not always reflect the underlying mechanisms involved in the human situation [56]. Thus, animal 
models do provide researchers with several advantages in developing a better understanding of the 
neurobiological basis of depression, but the models must be employed and interpreted prudently. 

Extensive preclinical research has shown that chronic stress produces physiological and behavioral 
alterations (e.g., abnormal hypothalamus-pituitary-adrenal (HPA) axis functioning, cellular and 
molecular abnormalities, anhedonia, learned helplessness, cognitive impairments) which are analogous 
to those observed in people with depression [57–59]. In terms of neuroplasticity, investigators have 
found that in animal models of chronic stress there is a significant reduction of the length, spine 
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density and arborization of dendrites on neurons in the hippocampus [60–67] and PFC [68–73], and 
increases in each one of these parameters in neurons of the amygdala [66,74]. Correspondingly, these 
chronic stress regimens have been shown to produce significant impairments of hippocampus-dependent 
(e.g., spatial learning) [75–81] and PFC-dependent (e.g., attention set-shifting, reversal learning) [68,71] 
memory, while enhancing performance on amygdala-dependent tasks (e.g., fear conditioning) [60,82]. 
Moreover, the same chronic stress regimen that results in hypertrophy of amygdala neurons increases the 
expression of anxiety-like behaviors in rats tested on the elevated plus maze [66,74]. 

The effects of chronic stress on hippocampal [60,77] and PFC [72] morphology have been found to 
be reversible – that is, the dendrites of neurons in these brain regions re-grow when the chronic stress 
regimen is discontinued. On the other hand, the effects of chronic stress on amygdala morphology and 
the amygdala-mediated expression of anxiety-like behavior do not reverse following the termination of 
stress [83]. The ability of neurons in the hippocampus and PFC to recover after the termination of 
stress appears to depend on the age of the subject under investigation; a recent study revealed that 
young (i.e., 3-month-old) rats exhibited full recovery of neurons in the PFC following cessation of 
chronic restraint stress, while middle-aged (i.e., 12-month-old) and aged (i.e., 20-month-old) rats 
exhibited minimal recovery in response to identical stress procedures [84]. This finding is particularly 
relevant to our understanding of how to develop better treatments for depression because it suggests 
that as the age of the individual increases, neuroplasticity, and the corresponding ability for neurons to 
recover following injuries that could be associated with depression, decreases. Therefore, if reversing 
the alterations of neuroplasticity that are induced by depression is key to successful treatment of the 
disorder, we must not look to develop pharmacological agents that merely prevent these alterations; 
rather, we should look to develop pharmacological agents that promote neuron growth and resilience. 

Research over the past couple of decades has shown that the effects of chronic stress on the 
morphology and functionality of the hippocampus, PFC and amygdala are mediated by an interaction 
between glucocorticoids and N-methyl-D-aspartate (NMDA) receptor activity. For instance, chronic 
administration of corticosterone mimics the effects of chronic stress on hippocampal [77,85,86] and 
PFC [87] morphology, and the stress-induced dendritic retraction observed in the hippocampus is 
blocked by steroid synthesis inhibitors [88], as well as NMDA receptor antagonists [88] and agents 
that significantly reduce extracellular levels of glutamate (e.g., phenytoin) [64,89]. These findings 
resonate with research in depressed patients, which indicates that these individuals exhibit an 
overactive HPA axis [90,91] and abnormal brain glutamatergic levels [92–94]. 

3. Tianeptine Prevents Stress-Induced Alterations of Neuroplasticity 

Daily administration of tianeptine has been shown to prevent the chronic stress-induced reduction 
of overall hippocampal volume [95] and CA3 dendrites [60,96,97], as well as the chronic stress-
induced hypertrophy of neurons in the amygdala [16,98]. Additional work has revealed that tianeptine 
prevents the effects of chronic stress on hippocampus-dependent learning and memory [79,99,100] and 
the amygdala-mediated enhancement of anxiety-like behavior [16,98]. The latter finding may be 
relevant to other work reporting that chronic tianeptine treatment reduces the expression of auditory fear 
conditioning, an amygdala-dependent task [101]. It is notable that the SSRIs fluoxetine and fluvoxamine 
were ineffective in preventing the effects of chronic stress on CA3 morphology [96], providing 
compelling evidence that SSRIs and tianeptine act through different cellular and molecular mechanisms. 
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The hippocampus is one of only two brain regions in the adult mammalian brain that produces new 
neurons through a process known as neurogenesis [102]. Although the functional role of neurogenesis 
has remained a highly debated topic, studies have provided evidence linking hippocampal 
neurogenesis with hippocampus-dependent learning and memory [103,104]. In addition, researchers 
have hypothesized that the pathogenesis of depression involves impaired hippocampal  
neurogenesis [105–109]. Accordingly, in animal models, chronic stress significantly reduces 
hippocampal neurogenesis [110–115] and increases apoptotic cell death in the hippocampus and 
temporal cortex [111,116,117]. Clinically effective antidepressants, including tianeptine, prevent the 
effects of chronic stress on hippocampal neurogenesis [95,105,115]. Tianeptine has also been reported 
to block the chronic stress-induced increase in apoptotic cell death in the temporal cortex [118], which 
may be related to its prevention of the chronic stress-induced reduction of cerebral metabolites 
associated with neuronal viability (e.g., N-acetyl-aspartate) [95]. 

Neurotrophic factors are significant regulators of cell survival and proliferation, thus making them 
vitally important for the process of neurogenesis [119]. Some of the most extensively characterized 
neurotrophic factors include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), 
neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). Numerous studies have shown that acute and 
chronic stress significantly reduce neurotrophic factor levels [115,120–122], with many of the studies 
focusing on the stress-induced reduction of BDNF levels in the hippocampus [114,123–131]. This 
effect has become the center of attention, at least in part, because several studies have reported 
significantly reduced levels of serum and hippocampal BDNF in depressed patients [132–134]. BDNF 
knock-out mice have been reported to exhibit morphological changes in the hippocampus that are 
comparable to those observed following exposure to chronic restraint stress [135]. Interestingly, 
investigators have shown that the efficacy of antidepressants in ameliorating behavioral symptoms of 
depression in depressed patients and in animal models of stress depends on their ability to increase 
BDNF levels [134,136,137]. 

Tianeptine’s prevention of the effects of chronic stress on neurogenesis may involve blocking the 
stress-induced reduction of neurotrophic factor levels in the hippocampus [123]. Another study found 
that chronic tianeptine treatment significantly increased BDNF levels in the rat amygdala, independent 
of whether or not the rats were exposed to stress [135]. According to Reagan and colleagues, the 
amygdala may be the site of the initiation of chronic stress-induced morphological changes in other 
brain regions, such as the hippocampus and PFC [135,138]. In support of this hypothesis, clinical 
studies on depressed patients have reported that morphological changes in the amygdala precede those 
that are observed in the hippocampus [139]. Therefore, tianeptine’s effectiveness as an antidepressant 
treatment may result from its enhancement of neurotrophin actions in the amygdala.  

4. Stress and Synaptic Plasticity: Stabilization by Tianeptine 

Synaptic plasticity involves activity-induced changes in synaptic function which then affect how the 
synapse will subsequently respond to afferent activity. Synaptic plasticity has long been hypothesized 
to be important for learning and memory, and it has been speculated that people with depression 
exhibit abnormal synaptic plasticity in the hippocampus, PFC and amygdala [16,17,30]. To indirectly 
address this issue, investigators have used animal models to examine the effects of stress on long-term 
potentiation (LTP), a physiological model of learning and memory involving an enhancement of 
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synaptic efficacy following high-frequency stimulation of afferent fibers [140]. Extensive work has 
shown that stress impairs the induction of LTP in the hippocampus and PFC, while facilitating its 
induction in the amygdala [141–144]. This stress-induced modulation of synaptic plasticity has been 
shown to be mediated by interactions among glucocorticoids [145–147], glutamatergic NMDA 
receptors [148–150] and amygdala-induced modulation of hippocampal plasticity [151,152]. 

Tianeptine has been shown to block the stress-induced impairment of LTP in the hippocampus and 
PFC, without interfering with the stress-induced enhancement of LTP in the basolateral amygdala 
(BLA) [153–156]. Tianeptine blocked the inhibitory effects of stress on hippocampal LTP and primed 
burst potentiation (PBP), a low-threshold form of LTP, when it was administered either before or after 
the stress experience [155,156]. Other antidepressants, including some SSRIs, have also been reported 
to block the effects of stress on LTP in the hippocampus and PFC, although these effects have been 
less significant and more transitory in nature [154,157]. 

5. Tianeptine Protects Memory from Stress and Enhances Learning and Memory  

Extensive work has shown that acute stress impairs hippocampus-dependent learning and memory 
in humans and rodents [141–144,158,159]. We previously reported that tianeptine, but not the 
anxiolytic propranolol, blocked the predator stress-induced impairment of rat spatial memory in the 
radial-arm water maze (RAWM) [160]. The RAWM is a water-filled tank with six swim arms 
radiating from an open central area; a hidden platform is placed at the end of one of the arms, and rats 
are given several training trials to learn the location of the hidden platform. Tianeptine prevented the 
effects of stress on memory without altering the stress-induced increase in glucocorticoids, indicating 
that tianeptine’s memory-protective effects can occur without attenuating the stress-induced activation 
of the HPA axis. This finding was also consistent with in vivo electrophysiological studies reporting 
that tianeptine blocked the effects of stress on hippocampal LTP without affecting stress-induced 
increases in corticosterone levels in rats [155].  

In more recent work, we reported that predator stress impaired spatial memory in rats that were 
adrenalectomized (ADX) [161]. This finding demonstrates that exposure to a cat can impair memory 
in the absence of a stress-induced increase in glucocorticoid levels. This finding, alone, provides 
strong evidence that the acute stress-induced impairment of hippocampus-dependent learning does not 
require a stress-induced elevation of glucocorticoid levels. More importantly, we found that tianeptine 
prevented the stress-induced impairment of spatial learning in ADX animals, as well. Collectively, these 
findings provide convincing evidence that, under stress conditions, tianeptine’s memory-protective 
effects are not accomplished by modulation of glucocorticoid levels.  

Studies have also shown that tianeptine administration, under non-stress conditions, increases the 
magnitude of synaptic plasticity (LTP and PB potentiation) in the hippocampal CA1 region [155,156]. 
This finding suggests that tianeptine should enhance learning and memory. Indeed, studies have shown 
that tianeptine enhances spontaneous alternation behavior, as well as performance on discrimination 
tasks in the T-maze and radial arm maze [162,163]. In contrast, acute administration of the SSRI fluoxetine 
impaired performance on the radial arm maze discrimination task [162], a finding that is relevant to other 
work reporting that fluoxetine impairs the induction of LTP in hippocampal slices [155]. 

We have extended the findings on tianeptine’s procognitive effects by assessing its influence on the 
spatial memory of rats trained in the RAWM. In the experiment, rats (250–275 g; Charles River 
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Laboratories) were injected intraperitoneally with one of five doses of tianeptine (0.25, 0.50, 1, 5,  
10 mg/kg) or vehicle (0.9% saline, 1 mL/kg) and then 30 min later, the rats were given RAWM 
training, following previously-described methods [78,160,161,164–171]. Briefly, the rats were given 4 
 trials to learn the location of a hidden escape platform, which was placed at the end of one of six arms, 
in the RAWM. Arm entry errors (i.e., entries into arms that did not contain the hidden platform) served 
as an indicator of the rat’s accuracy of its memory for the hidden platform location. Following the  
4 acquisition trials, the rats spent a 1-hour delay period in their home cages. This delay period 
terminated with a single short-term memory test trial in the RAWM. Twenty-four hours later, the rats 
were given a single memory test trial in the RAWM to assess their long-term memory for the hidden 
platform location. The doses of tianeptine used in this experiment include the same doses that have been 
shown to enhance hippocampal LTP and PBP [16,17,155,156], and to block the effects of chronic stress 
on hippocampal morphology [60,95–97] and hippocampus-dependent learning and memory [79,99,100]. 

Figure 1. Pre-training administration of tianeptine enhanced long-term (24-hours) spatial 
memory in the RAWM.  

 

The top graph illustrates arm entry errors during the four acquisition trials in the RAWM (1–4; left) 
and memory test trial performance 1 and 24 hours later. The acquisition data were analyzed with a 
mixed-model ANOVA, which revealed a significant main effect of trials, F (3,126) = 25.67, p <0.001, 
indicating that the rats made significantly fewer errors as the trials progressed. There was no significant 
main effect of group, and the Trial x Group interaction was not significant (p’s >0.05). Arm entry errors 
from the 1-hour and 24-hours memory test trials were analyzed with separated one-way ANOVAs. For 
the 1-hour memory test trial, there was no significant group effect (p >0.05). The 24-hours memory test 
trial is shown at the right of the top graph and also in the lower graph. There was a significant group 
effect for the 24-hours memory performance data, F (5,42) = 5.32, p <0.001. Post hoc tests indicated 
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that the groups administered 1, 5, or 10 mg/kg of tianeptine made significantly fewer arm entry errors 
than the groups administered vehicle (data in blue). The lower graph illustrates 24-hours memory 
performance in greater detail. The tianeptine-treated groups which exhibited no significant 
improvement in memory (0.25 and 0.5 mg/kg) are represented by the brown bars, and the  
tianeptine-treated groups which exhibited a significant improvement in memory (1, 5 and 10 mg/kg) 
are represented by the blue bars. The dashed line at 2.5 errors in both graphs indicates chance level of 
performance [168]. * = p <0.05 relative to the vehicle-treated group. 

As illustrated in Figure 1 (top), the tianeptine- and vehicle-treated groups were equivalent in their 
performance during the acquisition phase of the water maze task, as all groups made significantly 
fewer arm entry errors across the 4 training (acquisition) trials. In addition, all groups exhibited 
statistically equivalent performance on the short-term (1-hour) spatial memory test trial. The specific 
effect of pre-training tianeptine administration was revealed on the 24-hours memory test. Rats 
injected with the vehicle or the lowest doses of tianeptine (0.25 or 0.5 mg/kg) exhibited a deterioration 
of their memory at 24-hours. Rats administered the higher doses of tianeptine (1, 5, or 10 mg/kg), in 
contrast, exhibited intact 24-hours memory. This finding indicates that tianeptine, when administered 
30 minutes prior to acquisition, produced a dose-dependent enhancement of long-term (24-hours) 
spatial memory in rats.  

The tianeptine-mediated enhancement long-term memory is likely to be based on tianeptine’s well-
described enhancement of physiological measures of hippocampal function, including an enhancement 
of synaptic plasticity in the CA1 region. Moreover, these findings are consistent with our previous 
speculation that tianeptine enables hippocampus-dependent information to be stored more efficiently, 
thereby enhancing long-term memory under control conditions (Figure 1), as well as to protect the 
retrieval of the memory from being disrupted by stress [160]. 

6. Mechanisms Underlying Tianeptine’s Procognitive and Anti-Stress Effects 

Recent studies have indicated that tianeptine’s therapeutic effects are associated with its modulation 
of the glutamatergic system [7,8,12,16,33,161,172]. Glutamate is the primary excitatory neurotransmitter 
of the central nervous system, and one of its roles is to regulate calcium influx by acting on postsynaptic 
AMPA and NMDA receptors [173]. Studies have shown that depressed patients exhibit elevated 
glutamate levels in plasma, CSF and post-mortem brain samples, which supports current views 
implicating the dysregulation of glutamate transmission in the pathogenesis of depression [92–94].  

Extensive work has implicated hyperactivity of the glutamatergic system in the deleterious effects 
of stress on brain structure and function. Experiments conducted primarily on the hippocampus have 
shown that stress significantly increases glutamate levels [138,174–177], inhibits glutamate  
uptake [178], increases the expression and binding of glutamate receptors [179–181] and increases 
calcium currents [182]. Accordingly, researchers have shown that administration of NMDA receptor 
antagonists blocks the effects of stress on behavioral, morphological and electrophysiological measures 
of hippocampal function [148]. 

Tianeptine appears to protect the hippocampus and PFC from the deleterious effects of stress and 
depression by normalizing the stress-induced modulation of glutamatergic activity. For instance, 
tianeptine blocked the stress-induced increase in NMDA channel currents, as well as the ratio of 
NMDA: non-NMDA receptor currents, in the hippocampus [183]. Tianeptine also inhibited the acute 
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stress-induced increase in extracellular levels of glutamate in the BLA, while having no effect on the 
stress-induced increase in these levels in the central nuclei of the amygdala (CeA) [138]. Interestingly, as 
mentioned above, tianeptine had no effect on the stress-induced enhancement of LTP in the BLA [156]. 
This finding suggests that the stress-induced enhancement of LTP in the BLA may involve NMDA-
independent forms of synaptic plasticity, such as voltage-gated calcium channel-dependent LTP [184].  

In contrast to tianeptine, administration of the SSRI fluoxetine increased baseline and stress-
induced levels of glutamate in the BLA and CeA [138]. This finding may explain why SSRIs are 
anxiogenic early in the treatment phase [101,185]. Moreover, investigators have shown that acute 
administration of the SSRI citalopram enhanced the acquisition of auditory fear conditioning, while 
chronic treatment with citalopram impaired the acquisition and expression of conditioned fear [101]. 
Acute treatment with tianeptine, in contrast, had no effect on auditory fear conditioning, but when 
given chronically, exerted effects comparable to those of citalopram. Thus, tianeptine demonstrates 
long-lasting anxiolytic and antidepressant effects that are similar to SSRIs, without the adverse acute 
effects typically found with these agents. 

Tianeptine’s effect on glutamatergic activity in the amygdala may play an important role in its 
ability to reverse the effects of chronic stress on amygdala morphology and the expression of anxiety-
like behaviors. In addition to its glutamatergic modulation, tianeptine reduces the expression of 
corticotropin-releasing hormone (CRH) mRNA in the amygdala and the bed nucleus of the stria 
terminalis (BNST), a brain region that is highly innervated by amygdala fibers [186]. CRH 
neurotransmission in both of these regions has been implicated in the expression of anxiety-like 
behaviors, and several studies have reported significantly elevated CSF CRH levels in depressed 
patients [187–189]. If the amygdala is the site of the initiation of chronic stress-induced functional 
changes in other brain regions, such as the hippocampus and PFC, then tianeptine’s ability to stabilize 
amygdala activity could underlie its widespread anti-stress effects. 

Chronic stress has been shown to increase expression of the glutamate transporter, GLT-1, which is 
important for removing excess glutamate from synaptic regions [190]. This effect was specifically 
observed in the CA3 region of the hippocampus, the primary area exhibiting significant morphological 
alterations following chronic stress. Researchers have postulated that the up-regulation of GLT-1 
levels in this region is a compensatory response to chronic elevations of extracellular glutamate levels. 
Importantly, tianeptine has been shown to block the stress-induced increase in hippocampal GLT-1 
levels. In theory, tianeptine accomplishes this feat by normalizing stress-induced glutamate levels in the 
hippocampus, thereby removing the stimulus (i.e., excessive glutamate) which necessitates increased 
expression of GLT-1. 

In addition to its ability to normalize the stress-induced increase in NMDA receptor currents, 
tianeptine also increases basal excitatory synaptic transmission in hippocampal circuits, predominantly 
via enhancing AMPA EPSCs [183]. In addition to NMDA receptors, AMPA receptors play an important 
role in excitatory synaptic transmission and the induction of long-term synaptic plasticity [191]. Recent 
work has reported that tianeptine modulates the phosphorylation of AMPA receptor subunits in the 
hippocampus [6]. Other antidepressants, such as SSRIs and tricyclic antidepressants, have been shown 
to increase phosphorylation of the Ser845 site on the glutamate receptor subunit 1 (GluR1) of 
hippocampal AMPA receptors [192,193]. One team of investigators found that chronic, but not acute, 
tianeptine treatment significantly increased phosphorylation of the Ser831 and Ser845 sites on the 



Pharmaceuticals 2010, 3 
 

3152

GluR1 subunit of AMPA receptors in the CA3 region of the hippocampus [6]. More recent work has 
shown that acute tianeptine significantly increased phosphorylation of the Ser831 site on the GluR1 
subunit of AMPA receptors in the PFC, which was associated with tianeptine’s ability to prevent the 
acute stress-induced impairment of LTP in the hippocampus-PFC pathway [157]. Typically, 
phosphorylation of the Ser831 and Ser845 sites of AMPA receptors occurs via protein kinase A (PKA) 
and calcium/calmodulin-dependent protein kinase II (CaMKII) or protein kinase C (PKC), respectively, 
and potentiates AMPA currents in the hippocampus [194,195]. Thus, the tianeptine-mediated increase in 
the phosphorylation of the serine sites on the GluR1 subunit of AMPA receptors could explain the 
finding of a tianeptine-induced enhancement of AMPA EPSCs in the study of Kole et al. [183], which 
may also be relevant toward understanding tianeptine’s effectiveness as an antidepressant. 

In recent work, Uzbay and colleagues found that tianeptine attenuated pentylenetetrazole (PTZ)-induced 
seizures [196–198] in rodents, which is consistent with its known mode of action to reduce excessive 
glutamatergic activity. Importantly, the investigators found that the latter effect was blocked by the 
administration of caffeine, a nonspecific adenosine receptor antagonist, and 8-cyclopentyl-1,3-
dipropylxanthine, an A1 receptor-specific antagonist. Administration of the A2 receptor-specific 
antagonist, 8-(3-chlorostyryl) caffeine, had no effect on the tianeptine-induced delay of seizure onset. 
Thus, tianeptine’s anticonvulsant and anxiolytic properties in rodents [98,101,199–204] and in 
depressed people [205,206] may involve stabilization of glutamate levels acting in concert with 
activation of A1 adenosine receptors [199–202]. 

7. Summary and Conclusions 

Considerable progress has been made in describing the physiological and behavioral sequelae that 
result from depression, but the specific factors responsible for its development and maintenance are 
not well understood. Investigators have utilized animal models of stress effects on brain and behavior 
to develop a better understanding of the neurobiological basis of depression, which could ultimately 
produce improved treatment options for the patient. We have reviewed the findings of preclinical 
research demonstrating that tianeptine prevents the deleterious effects of stress on physiology and 
behavior. Tianeptine prevents chronic stress-induced morphological changes in the hippocampus and 
amygdala and blocks the effects of acute stress on synaptic plasticity in the hippocampus and PFC. We 
have also reviewed findings demonstrating that tianeptine has procognitive effects. Tianeptine 
enhances hippocampus-dependent learning and memory and prevents the stress-induced impairment of 
such processes. Tianeptine’s prevention of the adverse effects of stress on brain and behavior is likely 
to contribute to its effectiveness as a treatment for people suffering from depression.  

Tianeptine’s antidepressant effects appear to involve modulation of glutamatergic 
neurotransmission, which resonates with evidence implicating abnormal glutamate activity in the 
pathogenesis of depression. Cellular, molecular and electrophysiological studies have shown that 
tianeptine prevents the stress-induced rise in amygdaloid glutamate levels and blocks stress-induced 
changes in glutamate receptor currents and glutamate transporter expression in the hippocampus. 
Moreover, tianeptine potentiates AMPA receptor function, as demonstrated by increasing 
phosphorylation of the Ser831 and Ser845 sites on the GluR1 subunit of AMPA receptors in the 
hippocampus and PFC. These latter findings may explain why tianeptine enhanced long-term (24-hours) 
hippocampus-dependent memory retrieval (as reported here) and, more generally, how it facilitates 
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synaptic plasticity in the hippocampus. Other research has shown that tianeptine has anticonvulsant 
properties, which appear to be based on its stabilization of glutamate levels in conjunction with 
adenosine receptor activation.  

In summary, tianeptine is a well-described antidepressant with effective actions against stress-
induced deficits of the nervous system. It is as effective as SSRIs in treating depression, produces 
fewer adverse side effects and reduces anxious symptoms associated with depression without the need 
for concomitant anxiolytic therapy [18–21,207]. It is therefore relevant to note that tianeptine has been 
shown to ameliorate symptoms in people with post-traumatic stress disorder (PTSD) [208] and in 
recent work has been shown to block the effects of intense stress on behavior and cardiovascular 
systems in an animal model of PTSD [100]. Thus, the well-described antidepressant and memory 
protective properties of tianeptine indicate that, in addition to its effectiveness as a treatment in mood 
disorders, it potentially has broader applications, as in the treatment of anxiety. 
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