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The Koch—Haaf reaction of adamantanols was successfully carried out in a microflow system at room temperature. By combining

an acid-tolerant hastelloy-made micromixer, a PTFE tube, and a hastelloy-made microextraction unit, a packaged reaction-to-

workup system was developed. By means of the present system, the multigram scale synthesis of 1-adamantanecarboxylic acid was

achieved in ca. one hour operation.

Introduction

The recent evolution of microreactor technology has allowed
synthetic chemists to use this precisely sophisticated reaction
apparatus in place of the well-established glassware batch flask
[1-10]. Microreactors are expected to have a significant impact
on chemical synthesis and production because of their many ad-
vantageous characteristics, such as highly efficient mixing, effi-
cient heat transfer ability, precise control over the residence
time, and high operational safety. We have studied and devel-
oped practical organic syntheses using flow microreactors, and
we have reported thus far examples of Pd-catalyzed coupling
reactions [11-13], radical reactions [14-16], and photoreactions
[17-21].

Carbonylation reactions are a powerful tool for the introduction
of carbon monoxide into organic molecules, and we also
reported that Pd-catalyzed carbonylation [13] and radical
carbonylation [16] could be successfully carried out in a contin-
uous microflow system with higher efficiency than in a batch
autoclave system. In this study, we focused on the carbonyla-
tion of carbocation intermediates carried out in a continuous
microflow system [22-24]. The Koch—Haaf reaction [25], that is
the carbonylation of alcohols or olefins with formic acid in the
presence of a strong acid, is an important reaction for the
preparation of carboxylic acids, which are widely used in
organic synthesis [26-31]. Since the Koch—Haaf reaction is
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highly exothermic, the reaction is typically carried out at
controlled temperature by means of a cooling bath, such as an
ice bath, and with carefully controlled slow addition of reagents
through an addition funnel. The temperature control causes a
serious problem especially for large scale synthesis. Herein, we
report that the Koch—Haaf reaction in a microflow reactor can
be carried out at room temperature without any cooling equip-
ment. The employed hastelloy-made microreactor system was
compatible with corrosive (strongly acidic) conditions and
confirmed for gram scale (7.1 g) synthesis of 1-adamantanecar-
boxylic acid in ca. 1 h operation.

Results and Discussion

The carbonylation reaction of 1-adamantanol (1a) was investi-
gated in a microflow system as a model reaction. Since the
Koch—Haaf reaction requires the use of concentrated sulfuric
acid, an acid-tolerant system is essential. For this study, we
employed a combination of a hastelloy-made micromixer
(MiChS, B-150H) having 150 um reactant inlet holes and
200 pm x 300 pm channels (Figure 1), and a PTFE tube
(1.0 mm i.d. x 3 m, inner volume: 2.36 mL) as a residence time
unit. To this reactor system, a hastelloy-made microextraction
unit (a flow-workup system) was attached (Figure 2 and
Figure 3). The microextraction unit has three inlets and one
outlet (channel size: | mm i.d. x 14 cm). The reaction mixture
was mixed at T-shaped junctions with Et;O and water, and a
biphasic mixture was collected from the outlet.

Figure 1: Hastelloy-made micromixer (MiChS B-150H).

1-Adamantanol (1a) dissolved in HCOOH (flow rate:
0.30 mL/min) and 98% H,SOy4 (flow rate: 0.88 mL/min) were
mixed in the micromixer at room temperature, and the resulting
reaction mixture was fed into the PTFE tube and then into the
extraction unit, in which Et;O (flow rate: 2.5 mL/min) and
water (2 mL/min) were introduced to extract the carbonylation
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Figure 2: Hastelloy-made microextraction unit.

Figure 3: Acid-tolerant microflow system used for the Koch—Haaf
reaction.

product and remove excess acids (Scheme 1). The biphasic mix-
ture was collected in a flask and the ether layer was concen-
trated in vacuo. 1-Adamantanecarboxylic acid (2a) was
obtained in 89% isolated yield after purification by silica gel
column chromatography. While the residence time was a priori
expected to be 2 min based on the total flow rate of the reagents
and inner volume of the residence time unit, the observed
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Scheme 1: Synthesis of 1-adamantanecarboxylic acid (2a) in a
microflow system.

residence time was 1.5 min due to a plug flow by the CO gas
generated.

For comparison, we also carried out the batch reaction in a
50 mL glass flask on 4 mmol scale to give 2a in 92% yield. In
the batch reaction, the careful addition of a solution of 1a in
formic acid over a period of 5 min and cooling in an ice bath
were necessary to achieve good results. Indeed, without a
cooling bath, we observed that the temperature of the reaction
mixture rose up to 50-60 °C. It is therefore remarkable that the
reaction in the microflow system can be performed success-

fully at room temperature without any cooling unit.

We then investigated the reaction of some other adamantanols,
such as that of 2-adamantanol (1b) and 2-methyl-2-adaman-
tanol (1¢) (Scheme 2). The reaction of 1b in a microflow system
gave a mixture of 2-adamantanecarboxylic acid (2b) and
1-adamantanecarboxylic acid (2a) (82% total yield, 2b:2a =
58:42), in which the latter compound originated from the
isomerized tertiary cation, which derived from the initially
formed secondary cation. The batch reaction gave a mixture of
2b and 2a in 65% total yield with a greater proportion of the
rearranged product (2b:2a = 14:86). The reaction of 2-methyl-
2-adamantanol (1¢) resulted in a mixture of the carboxylated
products, 2¢, 2¢', and 2¢'"' in 97% total yield (2¢:2¢":2¢" =
23:53:24). The batch reaction resulted in an inferior yield with
more of the rearranged products (83% yield, 2¢c:2¢":2¢" =
19:62:19). All results are summarized in Table 1.

Multigram scale synthesis of 2a from 1a was carried out in a
continuous flow reaction. When the reaction of 1a (45 mmol)
was performed for 55 min, 7.1 g of 2a was obtained in 88%
yield, demonstrating that the present microflow system can be
used for multigram scale synthesis without any problems
(Scheme 3).

COOH 2 mL/min
@ @cow
82% (58:42)
H2SO4 | 0.3 mL/min PTFE tube 25 mL/min
20 equiv 1 mml.. x1m

|
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extraction unltI
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OH
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Scheme 2: Koch—Haaf reaction of 1b and 1c¢ in a microflow system.
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Scheme 3: Multigram scale flow synthesis of 1-adamantanecarboxylic
acid (2a).

Conclusion

In this work, we demonstrated that the Koch—Haaf reaction of
adamantanols was successfully carried out in an acid-tolerant
microflow system comprising a hastelloy-made micromixer, a
PTFE tube, and a hastelloy-made microextraction unit. Unlike
in the batch system, the reaction could be carried out at room
temperature without any cooling equipment. The employed

reaction-to-workup system was useful for the multigram scale
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Table 1: Koch—Haaf reactions of adamantanols.?
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Entry 1 Reactor Conditions Product (yield)?
T:20°C
flow rate (1a/HCO3H): 0.30 mL/min
1 OH microflow flow rate (HpSQOy4): 0.88 mL/min COOH
residence time: 2 min®
1a residence time: 1.5 mind 2a 89%
T: 15-20 °C
2 oH batch addition time: 5 min COOH
reaction time: 2 min
1a 2a 92%
COOH
OH T:20°C
flow rate (1b/HCO,H): 0.30 mL/min
3 microflow flow rate (HoSQOy4): 0.88 mL/min COOH
residence time: 2 min°® 2b 2a
1b residence time: 1 mind 82% (58:42)
COOH
OH
T:17-20 °C
4 batch addition time 5 min COOH
reaction time 1 min 2b 2a
1b
65% (14:86)
H T:20°C COOH
0 flow rate (1c/HCO5H): 0.01 mL/min COOH
5 microflow flow rate (H,SO4): 0.3 mL/min HOOC
residence time: 20 min® . w 7.
1c residence time: 2.5 mind 2c 2c 2c"(47:53)
97% (23:53:24)
COOH
OH T:17-20°C COOH
6 batch addition time: 3 min HOOC
reaction time: 10 min 2 2 2¢"(47:53)

-
(2]

83% (19:62:19)

a1 (4 mmol), HCOOH (6 equiv), HySO4 (20 equiv); Pisolated yield after column chromatography on SiO»; Ccalculated; Yobserved.

synthesis of 1-adamantanecarboxylic acid (2a). We are now
expanding the system to other cationic systems and the results

will be published in due course.

Experimental

Typical procedure for Koch—Haaf reaction in a microflow
system. Multigram scale synthesis of 1-adamantanecar-
boxylic acid (2a). 1-Adamantanol (1a, 60 mmol, 9.2 g) was
dissolved in 96% HCOOH (360 mmol, 16.6 g), and the solu-
tion was placed in a 50 mL syringe (22.3 mL), which was then
attached to a syringe pump. Concentrated H,SO4 (99%)
(1.2 mol, 64 mL) was placed in 100 mL syringe. These liquids
were mixed in the hastelloy micromixer (150 pm) (flow rate: 1a
in HCOOH = 0.3 mL/min, H,SO4 = 0.88 mL/min). The
resulting reaction mixture was then fed into the residence time
unit (PTFE tube, 1 mm i.d. x 3 m). The residence time was

observed to be 1.5 min. The mixture of products was fed into
the hastelloy-made extraction unit, which was cooled by an ice/
water bath. Et;O (2.5 mL/min) and water (2 mL/min) were fed
into the extraction unit. The mixture that was eluted during the
first 5 min was discarded and the portion that followed was
collected for 55 min (1a: 45 mmol). The ethereal layer was sep-
arated, and washed with 1.4 N KOH aq. The aqueous layer was
acidified with 1 N HCl and extracted with Et;O. The organic
layer was dried over MgSQy, filtered, and evaporated.
1-Adamantanecarboxylic acid (2a) was obtained in 88% yield
as a white solid (7.1 g, mp 171-172 °C). The obtained product
was identified by comparison of the 'H NMR and 13C NMR
spectra with those of commercially available authentic samples.
All other products, 2b, 2¢, 2¢', and 2¢'' were identified by
means of NMR spectroscopy by comparison with literature data
[32,33].
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Typical procedure for Koch—Haaf reaction in

a batch reaction system

In a 50 mL two-necked round bottom flask, 99% H,SO4
(80 mmol, 7.85 g) was placed. A solution of 1-adamantanol (1a,
4 mmol, 613 mg) in 96% HCOOH (24 mmol, 1.01 g) was
added through a dropping funnel over a period of 5 min, while
the temperature of the reaction mixture was maintained at
15-20 °C in an ice/water bath. The reaction mixture was stirred
at 15-20 °C for an additional 2 min, poured into ice/water and
extracted with Et;O. The ethereal layer was washed with 1.4 N
KOH aq, and the aqueous layer was acidified with 1 N HCI and
extracted with Et,O. The organic layer was dried over MgSOy,
evaporated and purified by column chromatography on SiO».
Compound 2a was obtained in 92% yield (667 mg). The reac-
tion of 1b and 1¢ was carried out by a similar procedure.
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