Curriculum Vitae

Name: Susan L. Mercer

Degree and Date to be Conferred: Ph.D., 2008

Collegiate Institutions Attended:

Seton Hill University, Greensburg, PA 15601 – 2000-2004 B.S. awarded May 2004 Major: Chemistry Minor: Forensic Science

University of Maryland, Baltimore, Baltimore, MD 21201 – 2004-2008 Ph.D. awarded August 2008 Major: Pharmaceutical Sciences Focus: Medicinal Chemistry

Professional Publications:

- 1. Koek W, Chen W, **Mercer SL**, Coop A, France CP. Discriminative stimulus effects of gamma-hydroxybutyrate (GHB): role of training dose. *J. Pharmacol. Exp. Ther.* **2006**; 317(1): 409-417.
- 2. Mercer SL, Hassan HE, Cunningham CW, Eddington ND, Coop A. Opioids and efflux transporters. Part 1: P-Glycoprotein substrate activity of *N*-substituted analogs of meperidine. *Bioorg. Med. Chem. Lett.* **2007**; 17(5): 1160-1162.
- Koek W, Mercer SL, Coop A. Cataleptic effects of GHB, its precursor GBL, and GABA_B agonists: differential antagonism by CGP35348. *Psychopharmacology* 2007; 192(3): 407-414.
- 4. Cunningham CW, Mercer SL, Hassan HE, Traynor JR, Eddington ND, Coop A. Opioids and efflux transporters. Part 2: P-Glycoprotein substrate activity of 3- and 6-substituted morphine analogs. *J Med Chem.* **2008**; 51(7): 2316-2320.
- 5. Mercer SL, Shaikh J, Traynor JR, Matsumoto RR, Coop A. Nitrile analogs of meperidine as high affinity and selective sigma-1 receptor ligands. *Eur. J. Med. Chem.* 2008; 43(6): 1304-1308.
- 6. Mercer SL, Cunningham CW, Eddington ND, Coop A. Opioids and efflux transporters. Part 3: P-glycoprotein substrate activity of 3-hydroxyl addition to meperidine analogs. *Bioorg. Med. Chem. Lett.* **2008**; 18(12): 3638-3640.

- 7. Hassan HE, **Mercer SL**, Cunningham CW, Coop A, Eddington ND. Evaluation of the P- glycoprotein affinity status of a series of novel and currently available morphine analogs: comparative study with meperidine analogs to identify opioids with minimal P-gp interactions. *Int. J. Pharmaceutics*. Accepted.
- 8. **Mercer SL** and Coop A. Opioid analgesics and P-glycoprotein efflux transporters: A potential systems-level contribution to analgesic tolerance. *Curr. Top. Med. Chem.* In Review.

Selected Professional Abstracts:

- SL Mercer, CW Cunningham, HE Hassan, ND Eddington, A Coop. The Relative Activity of Meperidine Analogs as P-glycoprotein Substrates. University of Maryland, Baltimore, School of Pharmacy Annual Research Day. Baltimore, MD. May 2006.
- CW Cunningham, SL Mercer, HE Hassan, ND Eddington, A Coop. Effect of 3and 6-Substitution on P-gp substrate activity of morphine analogs. University of Maryland, Baltimore, School of Pharmacy Annual Research Day. Baltimore, MD. May, 2006.
- 3. **SL Mercer**, CW Cunningham, HE Hassan, ND Eddington, A Coop. The Relative Activity of Opioids as P-glycoprotein Substrates. Abstracts of the College on Problems of Drug Dependence. Scottsdale, AZ. June **2006**.
- 4. CW Cunningham, HE Hassan, **SL Mercer**, ND Eddington, A Coop. Diminished P-gp Substrate Activity of 3- and 6-Substituted Morphine Analogs. International Narcotics Research Conference. Minneapolis, MN. July, **2006**.
- SL Mercer, CW Cunningham, HE Hassan, ND Eddington, A Coop. The Relative Activity of Meperidine Analogs as P-glycoprotein Substrates. International Narcotics Research Conference. Berlin, Germany. July 2007.
- SL Mercer, CW Cunningham, HE Hassan, ND Eddington, A Coop. The Relative Activity of Meperidine Analogs as P-glycoprotein Substrates. University of Maryland, Baltimore, School of Pharmacy Annual Research Day. Baltimore, MD. April 2008.
- TN Stephenson, SL Mercer, A Coop. UMB24 Analogs as Potential Methamphetamine Treatments. University of Maryland, Baltimore County (UMBC) Undergraduate Research and Creative Achievement Day. April 2008.
- 8. **SL Mercer,** CW Cunningham, ND Eddington, A Coop. Synthesis and Characterization of Meperidine Analogs at the P-glycoprotein Efflux Transporter. National Medicinal Chemistry Symposium. Pittsburgh, PA. June **2008**.

 CW Cunningham, SL Mercer, HE Hassan, JR Traynor, ND Eddington, A Coop. The Effect of 3- and 6-Substitution on the Substrate Activity of Morphine Analogs at P-glycoprotein. National Medicinal Chemistry Symposium. Pittsburgh, PA. June 2008.

Professional Positions Held:

Assistant Professor Lipscomb University College of Pharmacy 1 University Park Drive Nashville, TN 37204 (Start Date: September 1, 2008)

Graduate Research Assistant University of Maryland, School of Pharmacy Department of Pharmaceutical Sciences Baltimore, MD 21201 *Mentor: Andrew Coop, Ph.D.* July 2004 – August 2008

Chemistry Lab Work-Study/ Lab Assistant. Seton Hill University Chemistry Department Greensburg, PA 15601 *Mentor: Susan Yochum, S.C., Ph.D.* August 2000 – May 2004

Summer Undergraduate Research Student Howard Hughes Medical Institute Fellow Case Western Reserve University, School of Medicine Department of Pharmacology Cleveland, OH 44106 *Mentor: John Mieyal, Ph.D.* May 2002 – August 2002

Summer Internship Student Bayer Corporation OEM Coatings and Colorants Laboratory Pittsburgh, PA 15210 *Mentor: Patricia Jacobs, Ph.D.* May 2001 – August 2001

Current Committee Memberships:

American Association of Colleges of Pharmacy (AACP)

American Association of Pharmaceutical Scientists (AAPS)

American Chemical Society (ACS)

Tennessee Pharmacists Association (TPA)

Selected Leadership Positions:

American Chemical Society – Maryland Section (MD-ACS) Committee Chair – MD ACS Student Grants (2006-2008) Student Affiliate Liaison to the Executive Committee (2006-2008) Election Committee (2006)

Pharmaceutical Sciences Graduate Student Association University of Maryland, Baltimore Graduate Student Association Representative (2006-2007) Vice-President (2005-2006)

American Association of Pharmaceutical Scientists – Student Chapter University of Maryland, Baltimore Events Coordinator (2005-2006)

Seton Hill University SA-ACS Chemistry Club President (2002-2003 and 2003-2004) Secretary (2001-2002)

Selected Community Activities:

University of Maryland, Baltimore Pharmaceutical Sciences Graduate Program Steering Committee (2007-2008) Mentor for Exploration in Science Research Awareness Program (2007) Coordinator and Participant in Ronald McDonald House Dinner (2006) Tutor for "A Bridge to Academic Excellence" (2005)

Selected Special Awards:

National Medicinal Chemistry Symposium Travel Award (2008) ACS Leadership Development Award (Younger Chemists Committee) (2008) Pharmaceutical Sciences Competitive Departmental Predoctoral Fellowship and Merit Award (University of Maryland, School of Pharmacy) (2007-2008)

<u>Abstract</u>

Title of Dissertation:Synthesis and Characterization of Meperidine Analogs at
the P-Glycoprotein Efflux TransporterSusan L. Mercer, Doctor of Philosophy, 2008Dissertation Directed by:Andrew Coop, Ph.D.
Professor and ChairDepartment of Pharmaceutical Sciences
University of Maryland, School of Pharmacy
20 Penn Street, HSF II Room 543
Baltimore, MD 21201 USA

Chronic clinical pain remains poorly treated. The use of mu opioid analgesics is effective in treating chronic pain, but the rapid development of tolerance to the analgesic effects necessitates ever increasing doses to be administered. However, tolerance to the constipatory effects occurs at a slower rate, a condition we refer to as differential tolerance. There is a great need to develop opioids to which differential tolerance does not develop in order to reduce the severity of constipation. Our hypothesis is that the efflux transporter, P-glycoprotein (P-gp), contributes to the development of central tolerance by actively pumping morphine out of the CNS. P-gp is present at the BBB, morphine is a known P-gp substrate, and P-gp is up-regulated in morphine and oxycodone tolerant animals. As analgesia is primarily central and constipation is primarily peripheral, up-regulation of P-gp would be expected to lead to lower brain concentrations of morphine compared to naïve animals; therefore, contributing to tolerance.

The design of opioids with decreased activity as P-gp substrates is anticipated to produce analgesics with reduced differential tolerance and therefore, diminished constipation. Meperidine, a moderately potent mu opioid receptor agonist causes less constipation than morphine clinically and has lower P-gp substrate activity than morphine. We have worked towards the optimization of meperidine by 1) employing opioid *N*-substituent SAR to increase its potency similar to morphine, 2) synthesizing isosteric replacements of the 4-ester to increase duration of action, and 3) introducing steric hinderance into the piperidine ring at the 2- and 6-positions to eliminate toxic metabolite formation. All analogs were analyzed for opioid receptor binding and P-gp substrate affinity. Results showed the optimal *N*-substituent was *N*-methyl; the ester was superior in the 4-position, and the introduction of a *m*-OH into the phenyl ring increased P-gp substrate affinity. Progress towards introducing steric hindrance is reported along with the strategy for their completion.

Additional work on the synthesis and development of 1) selective sigma-1 ligands for stimulant abuse and 2) a dual profile inhibitor of the S100 β and p53 interaction involved in malignant melanoma is presented.

Synthesis and Characterization of Meperidine Analogs at the P-

Glycoprotein Efflux Transporter

By

Susan L. Mercer

Dissertation submitted to the faculty of the Graduate School of the University of Maryland, Baltimore in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2008

UMI Number: 3337301

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI®

UMI Microform 3337301 Copyright 2009 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

© Copyright 2008 by Susan L. Mercer

All rights reserved

This work is dedicated to my parents, Edward and Peggy Gillenberger, III My sister, Chris Gillenberger And my husband, Greg Mercer For their unconditional love, support, and encouragement

i

Acknowledgments

I first and foremost would like to thank my advisor, Dr. Andrew Coop. His enduring support, guidance, and encouragement have fostered my development as a scientist. I am truly grateful that Andy has allowed me the freedom to explore additional scientific disciplines of personal interest so that I could truly become an interdisciplinary scientist and understand the many facets of drug design and discovery. Andy has been a great mentor, providing invaluable advice towards my career development, teaching me how to handle failure and how to celebrate success!

I thank my Ph.D. Committee Members, Dr. Sarah Michel, Dr. Edward Moreton, Dr. Amy Newman, and Dr. James Polli for their professional attention during my graduate training as well as their invaluable advice relating to career opportunities.

My time in graduate school has been made more enjoyable through working and interacting with my past and present labmates: Dr. Matthew Metcalf, Christopher Cunningham, Trudy Smith, Dr. Marilyn Matthews, and Lidiya Stavitskaya. Their support and constructive criticism of my work and future plans have encouraged me to work harder and excel as a scientist. I will truly miss our coffee breaks, group lunches, and trips to the pub to converse and celebrate the many milestones we have achieved individually and as a group.

I am thankful for having the opportunity to have worked and/or collaborated with Dr. Natalie Eddington, Dr. Alexander MacKerell, and Dr. Angela Wilks who have provided numerous learning opportunities and reality checks! Additionally, Drs. Kellie Hom and Julie Ray have provided excellent technical assistance in NMR and MS, respectively. Many thanks also go to the Drug Evaluation Committee for performing the opioid pharmacological analyses and Dr. Rae Matsumoto (West Virginia University School of Pharmacy) for performing the sigma binding analysis.

I am especially blessed and grateful to have such a wonderful and supportive family. My parents always wanted their children to succeed and have made personal sacrifices so that my sister I could excel and pursue our dreams. Their support and encouragement have been steadfast, especially at times when I needed it most throughout the years. A warm-hearted "You can do it!" from Mom always gave me encouragement and talks with Dad kept me "level-headed"...or so he tried! My sister, Chris, has been a constant friend in my life, who always reminds me of simpler ways and how to have fun. This is as much their success as it is mine.

During my graduate career, I was fortunate to have married a truly wonderful, compassionate, and supportive husband, Greg, who has remained patient and loving throughout the years. I am extremely grateful that he has been present in my life to deal with the day-to-day hardships and always remind me of the big picture. His family has also been supportive and enjoys celebrating in our successes.

Lastly, this work has been made possible from multiple funding resources including: the National Institute on Drug Abuse, National Institutes of Health (DA-13583), the University of Maryland, School of Pharmacy Collaborative Research Grant, and a Pre-doctoral Fellowship from the University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences.

As I reflect on my journey and development through graduate school and the family, friends, and mentors I have interacted with along the way, I realize that I am truly blessed.

Table of ContentsDedicationiAcknowledgementiiList of TablesxList of FiguresxiiList of SchemesxvList of Abbreviationsxvii

Chapter 1: Opioid Analgesics: Mechanism of Action, Side Effects and Current

Implicat	ions in Research	1
1.1	Introduction to Analgesics	
1.2	History of Opioids	
1.3	Opioid Receptor Subtypes and Pharmacological Actions	5
1.4	Opioid-Related Constipation and Current Treatments	6
1.5	Opioid-Related Tolerance	
1.5.	1 Mechanisms of Opioid Tolerance	
1.6	Introduction to the P-Glycoprotein (P-gp) Efflux Transporter	11
1.7	Project Rationale – Optimization of Meperidine	
1.7.	1 Hypothesis	13
1.7.	2 Increase the Potency of Meperidine	13
1.7.	3 Increase the Duration of Action of Meperidine	14
1.7.	4 Hinder <i>N</i> -Dealkylation of Meperidine	16
1.8	Additional Thesis Work	17
1.8.	1 Nitrile Analogs of Meperidine as Sigma Receptor Ligands	

1.8.2	Development of a Dua	l Profile S100β and p53 Inhibitor	18
-------	----------------------	-----------------------------------	----

Chapter	2: Opioid Analgesics and P-Glycoprotein Efflux Transporters:	A Potential
Systems-	Level Contribution to Analgesic Tolerance	
2.1	Introduction	
2.2	Assessment of P-gp function: In vitro and in vivo systems	
2.3	Opioids and P-gp	
2.3.1	Morphine	
2.3.2	Methadone	
2.3.3	Loperamide	
2.3.4	Meperidine	
2.3.5	Oxycodone	
2.3.6	Fentanyl	
2.4	Development of opioid analgesics lacking P-gp substrate activity .	
2.5	Conclusion	

Chapter 3: P-Glycoprotein Substrate Activity of N-Substituted Analogs of

Meperid	line and 3,6-Desoxymorphine Analogs	35
3.1	Introduction	37
3.2	Results and Discussion	39
3.2.	1 Chemistry	39
3.2.	2 Opioid Receptor Binding Studies	40
3.2.	3 Antinociception Studies	41

3.2.4	Drug Stimulated P-gp ATPase Activity	
3.2.5	Assessment of the Antinociceptive Effects of Meperidine an	d <i>N</i> -phenylbutyl
normej	peridine (7) in <i>mdr1a/b</i> (-/-) and <i>mdr1a/b</i> (+/+) Mice	
3.2.6	Morphine Series	
3.3 C	onclusion	
3.4 E	xperimental Section	
3.4.1	Chemistry	
3.4.2	Pharmacological Assays	
3.4.2	2.1 Opioid Binding	59
3.4.2	2.2 Opioid Antinociception Studies	59
3.4.2	2.3 Drug Stimulated P-gp ATPase Activity	59
3.4.2	2.4 Experimental Animals	60
3.4.2	2.5 Assessment of the Antinociceptive Effects of Opioids in	1 mdr1a/b (-/-)
and	mdr1a/b (+/+) Mice for the Time Course Study	60
3.4.2	2.6 Assessment of the Antinociceptive Effects of 6-Des	oxymorphine in
mdr	1a/b (-/-) and mdr1a/b (+/+) Mice for the Dose Response Stud	y61

Chapter 4: P-Glycoprotein Substrate Activity of 3-Hydroxyl Addition to

Meperidine Analogs		
4.1	Introduction	
4.2	Results and Discussion	66
4.2.	1 Chemistry	66
4.2.	2 Drug Stimulated P-gp ATPase Activity	68

4.3	Conclusion	69
4.4	Experimental Section	69
4.4.1	Chemistry	69
4.4.2	2 Drug Stimulated P-gp ATPase Activity	71

5.1 Intr	oduction	74
5.2 Res	ults and Discussion	77
5.2.1	Original Proposed Synthesis	
5.2.2	Synthetic Progress to Date	
5.2.2.1	2-Methyl Meperidine Analog Synthesis	83
5.2.2.2	2 2,2-Dimethyl Meperidine Analog Synthesis	84
5.2.2.3	3 2,6-Dimethyl Meperidine Analog Synthesis	84
5.2.2.4	2,2,6,6-Tetramethyl Meperidine Analog Synthesis	
5.3 Cor	clusion	
5.4 Exp	erimental Section	
5.4.1	Chemistry	

cceptor	Liganus	/1
6.1	Introduction	93
6.2	Results and Discussion	94
6.2.1	Chemistry	94

6.2.	2 Opioid Receptor Binding Studies	
6.2.	3 Sigma Receptor Binding Studies	97
6.3	Conclusion	100
6.4	Experimental Section	100
6.4.	1 Chemistry	100
6.4.	2 Opioid Binding	104
6.4.	3 Sigma Binding	
Chapter	7: Dual Profile Inhibitors of S100β and p53	106
7.1	Introduction	107
7.2	Results and Discussion	110
7.2.	1 Chemistry	110
7.2.	2 S100β Binding Studies	111
7.2.	3 NMR Perturbation Studies	
7.3	Conclusion	
7.4	Experimental Section	
7.4.	1 Chemistry	
7.4.	2. Fluorescence Binding Studies	
7.4.	3 NMR Spectroscopy	

Chapter 8:	Summary1	34
------------	----------	----

Appendices	s	140
App	endix A: Full Range Oxymorphone Concentration Dependent Study	141
References		142

List of Tables

Chapter 2 Phylogenetic analysis of ABC transporters Table 2.1. 22 Table 2.2. Initial brain uptake clearance of opioids during in situ perfusion in mice 29

Chapter 3

_		
Table 3.1.	Compounds prepared, salt form, yield, and melting points	39
Table 3.2.	Opioid receptor binding affinity to cloned opioid receptors	41
Table 3.3.	In vivo potency of N-substituted meperidine analogs in mice	42
Table 3.4.	In vivo potency of 6-desoxymorphine in mice	49
Table 3.5.	Analytical data for compounds 3-14	58
Chapter 4		

Chapter 4

Table 4.1.	Fold stimulation values of test compounds prepared, salt form, yield,	
	and melting points	68
Table 4.2.	Analytical data for compounds 3, 6, 9, and 11	71

Table 5.1.	Reaction conditions for $25 \rightarrow 26$	85
Table 5.2.	Reaction conditions for $32 \rightarrow 33$	87

Chapter 6

Table 6.1.	Opioid binding affinities of test compounds 2-10	96
Table 6.2.	Sigma binding affinities of test compounds 2-10, AC927,	
	and UMB24	99
Table 6.3.	Analytical data for compounds 2-10	104

Chapter 7

Table 7.1.	Preliminary binding affinities of selected compounds determined	
	by direct fluorescence	112
Table 7.2.	Analytical data for compounds 1a-5d	127

List of Figures

Chapter 1		
Figure 1.1.	Structure of morphine, codeine, heroin, morphine-6-glucoronide, and	
	meperidine	5
Figure 1.2.	Structure of loperamide, diphenoxylate, alvimopan, and	
	methylnaltrexone	7
Figure 1.3.	Illustration of GPCR	11
Figure 1.4.	Sterically hindered meperidine analog targets	17
Chapter 2		
Figure 2.1.	Structures of investigated opioids	26
Chapter 3		
Figure 3.1.	Structures of morphine and oxycodone	38
Figure 3.2.	Results of compounds and standards in the P-gp-Glo assay	43
Figure 3.3.	Tail flick latencies expressed as %MPE versus time for $mdr1a/b$ (+/+)	
	mice (WT) and <i>mdr1a/b</i> (-/-) mice (KO) that received single <i>i.p.</i> dose of	f
	50 mg/kg meperidine	46
Figure 3.4.	Tail flick latencies expressed as %MPE versus time for $mdr1a/b$ (+/+)	
	mice (WT) and <i>mdr1a/b</i> (-/-) mice (KO) that received single <i>i.p.</i> dose of	f
	3 mg/kg or 60 mg/kg N-phenylbutyl normeperidine	47
Figure 3.5.	Structures of codeine and 6-desoxymorphine	48
Figure 3.6.	Results of compounds and standards in the P-gp-Glo assay	49

Figure 3.7.	Tail flick latencies expressed as %MPE versus time for <i>mdr1a/b</i> (+/+)
	mice (WT) and <i>mdr1a/b</i> (-/-) mice (KO) that received single <i>i.p.</i> d	lose of
	0.2 mg/kg or 2 mg/kg 6-desoxymorphine	50

Figure 3.8. Tail flick latencies expressed as %MPE versus dose (mg/kg) for mdr1a/b (+/+) mice (WT) and *mdr1a/b* (-/-) mice (KO) that received single *i.p.* dose of 0.5, 1.0, and 1.5 mg/kg of 6-desoxymorphine 52

Chapter 4

Figure 4.1.	Structures of morphine and oxycodone	66
Chapter 5		

Chapter 5

Figure 5.1.	Major pathways of meperidine biotransformation and structures of the	
	reversed ester of meperidine and MPTP	76
Figure 5.2.	Synthetic targets for sterically hindered meperidine analogs	77
Figure 5.3.	Proposed 2-methyl substituted meperidine analogs	79
Figure 5.4.	Proposed 2,2-dimethyl substituted meperidine analogs	80
Figure 5.5.	Proposed 2,6-dimethyl substituted meperidine analogs	81

Figure 6.1.	Structures of AC927.	UMB24, and compounds 2-10	95
-------------	----------------------	---------------------------	----

Figure 7.1.	Structure of pentamidine	109
Figure 7.2.	HSQC spectra of ¹⁵ N labeled S100β	113
Figure 7.3.	HSQC overlay spectra of pentamidine, test compound, and	
	control interactions with S100β	114
Figure 7.4.	NMR perturbation of pentamidine	115
Figure 7.5.	NMR perturbation of 2c	116
Figure 7.6.	NMR perturbation of 3a	116
Figure 7.7.	NMR perturbation of 3b	116
Figure 7.8.	NMR perturbation of 3c	117
Figure 7.9.	NMR perturbation of 3d	117
Figure 7.10.	NMR perturbation of 4c	117
Figure 7.11.	NMR perturbation of 5b+TRTK	118
Figure 7.12.	¹ H NMR of compound 3a	128
Figure 7.13.	¹ H NMR of compound 3b	129
Figure 7.14.	¹ H NMR of compound 3 c	130
Figure 7.15.	¹ H NMR of compound 3d	131

List of Schemes

Scheme 3.1.	Reagents and conditions for the synthesis of N-substituted	
	meperidine analogs	39
Chapter 4		
Scheme 4.1.	Reagents and conditions for the synthesis of isosteric	
	replacements of meperidine	66
Scheme 4.2.	Reagents and conditions for the introduction of a m-OH into	
	the phenyl ring of meperidine	67
Chapter 5		
Scheme 5.1.	Proposed reagents and conditions for 2-methyl meperidine analogs	78
Scheme 5.2.	Proposed reagents and conditions for 2,2-dimethyl meperidine	
	analogs	79
Scheme 5.3.	Proposed reagents and conditions for 2,6-dimethyl meperidine	
	analogs	80
Scheme 5.4.	Proposed reagents and conditions for 2,2,6,6-tetramethyl	
	meperidine analogs	82