

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 3638-3640

Opioids and efflux transporters. Part 3: P-glycoprotein substrate activity of 3-hydroxyl addition to meperidine analogs

Susan L. Mercer, Christopher W. Cunningham, Natalie D. Eddington and Andrew Coop*

Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Room 543, Baltimore, MD 21201, USA

> Received 4 March 2008; revised 18 April 2008; accepted 22 April 2008 Available online 25 April 2008

Abstract—Numerous studies have shown that many clinically employed opioid analgesics are substrates for P-glycoprotein (P-gp), suggesting that up-regulation of P-gp may contribute to the development of central tolerance to opioids. The studies herein focus on the development of SAR for P-gp substrate activity in the meperidine series of opioids. Addition of a 3-OH to meperidine and the ketone analog of meperidine yielding bemidone and ketobemidone, respectively, significantly increased P-gp substrate affinity. The results of this study have implications in the development of novel analgesics to be utilized as tools to study the contribution of P-gp on the development of central tolerance to opioids. © 2008 Elsevier Ltd. All rights reserved.

Introduction. There is a growing body of evidence that suggests efflux transporters, specifically P-glycoprotein (P-gp), may play a role in the development of opioid related central tolerance and constipation.¹⁻⁶ Recent studies have shown that opioids are substrates for P-gp, although to differing extents,⁷ and P-gp is up-regulated at the blood-brain barrier (BBB) of morphine³ (1) and oxycodone² (2) (Fig. 1) tolerant rats. Upon chronic administration, the up-regulated P-gp would be expected to result in lower brain concentrations of opioid, thereby exacerbating tolerance to the central analgesic effects. P-gp knockout animals⁸ are available and offer a useful model to study the effects of P-gp on opioids; however, an alternative approach in wild-type animals is the development of mu opioid receptor agonists which are not P-gp substrates. These compounds would allow a full investigation of the contribution of up-regulated P-gp to opioid tolerance, as full cross-tolerance between morphine and the opioid lacking P-gp substrate activity would not be anticipated to occur. Additionally, opioids lacking P-gp substrate activity may potentially be developed into analgesics with lower degrees of tolerance.

Meperidine (3), a moderately potent mu opioid analgesic, ^{9,10} has been reported to possess low P-gp substrate activity.⁷ Therefore, our investigations are focused on delineating the structure-activity relationship (SAR) for the addition of a *m*-OH, while increasing mu opioid potency based on known SAR for this series.¹⁰

Results and discussion. The compounds synthesized are readily known in the literature as mu opioid analgesics;¹⁰ however, the syntheses described here are novel approaches. Meperidine (**3**) was prepared from nitrile **4** (obtained from Sigma–Aldrich, Inc.), via alkylation with MeI in DMF in the presence of K_2CO_3 , followed by aqueous NH₄Cl hydrolysis of the *N*-methyl nitrile **5** to the ethyl ester through treatment with H₂SO₄ and EtOH. Treatment of **5** with EtMgBr, via a Grignard reaction,¹¹ produced the ketone meperidine analog **6** (Scheme 1).

Bemidone 9 was prepared from the condensation of mechloroethamine hydrochloride and 3-methoxyphenyl-

Figure 1. Morphine (1) and oxycodone (2).

Keywords: Meperidine; P-glycoprotein; Opioids; Tolerance.

^{*} Corresponding author. Tel.: +1 410 706 2029; fax: +1 410 706 5017; e-mail: acoop@rx.umaryland.edu

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2008.04.046

Scheme 1. Reagents and conditions: (a) MeI, K_2CO_3 , DMF; (b) H_2SO_4 , EtOH, reflux; (c) EtMgBr, NH₄Cl hydrolysis.

acetonitrile (both reagents obtained from Sigma–Aldrich, Inc.) with NaH and NaOH to yield 7. *O*-dealkylation of 7 was performed with BBr₃ and NH₄OH,¹² converting the methoxy group to a phenol **8**, followed by nitrile hydrolysis to give the *m*-OH ethyl ester as previously described.⁴ Treatment of 7 with an EtMgBr Grignard reagent,¹¹ followed by aqueous NH₄Cl hydrolysis produced **10**, which then underwent treatment with BBr₃ to produce ketobemidone (**11**) (Scheme 2).

All compounds were converted to their respective salts (see Table 1). Drug stimulated P-gp ATPase activity

was estimated using the Pgp-Glo assay system¹³ (Promega, Madison, WI) and the results are shown in Table 1. Briefly, this method relies on the ATP dependence of the light-generating reaction of firefly luciferase where ATP consumption is detected as a decrease in luminescence, the greater the decrease in signal the higher the P-gp activity. Sodium orthovanadate was used as a P-gp ATPase inhibitor, whereas verapamil was used as a positive control. All test compounds were analyzed at 200 μ M and fold stimulation values were calculated using Eq. 1. Fold stimulation values greater than 2.0 indicate a P-gp substrate.¹⁴

Fold stimulation by a test compound

$$=\frac{\text{Test compound stimulated P-gp activity}}{\text{Basal P-gp activity}}$$
(1)

The addition of a *m*-OH into the phenyl ring significantly increases the P-gp fold stimulation of meperidine analogs. Meperidine itself has a P-gp fold stimulation value of 1.78 and increases to 2.64 with the *m*-OH addition (bemidone, 9). Whereas the ketone analog 6, with a P-gp fold stimulation value of 1.37, increases to 4.89 with the *m*-OH addition (ketobemidone, 11). Thus, the addition of a *m*-OH increases the P-gp substrate activity of these meperidine analogs, which are members of the 4-phenylpiperidine class of opioids.

The hydroxylated meperidine analogs were initially pursued to investigate the relationship between P-gp and increased opioid potency. Interestingly, these results are consistent with previous studies in our laboratory which

Scheme 2. Reagents: (a) NaH, NaOH; (b) BBr₃, NH₄OH; (c) H₂SO₄, EtOH; (d) EtMgBr, NH₄Cl hydrolysis.

Table 1. Fold stimulation values of test compounds prepared, salt form, yield, and melting point

Compound	Name	Salt	Yield (%)	Mp (°C)	Fold stimulation ± SEM
	Non-treated (control)				1.00
3	Meperidine	Oxalate	7	190-192	$1.78 \pm 0.39^*$
6	Ketone analog	Citrate	56	170-171	$1.37 \pm 0.19^*$
9	Bemidone	Oxalate	36	200-202	$2.64 \pm 0.82^{*}$
11	Ketobemidone	Oxalate	51	233–235	$4.89 \pm 1.94^*$

All compounds assayed at 200 μ M. Data are represented as fold stimulation ± SEM (n = 3). *Significant difference (p < 0.05) from control (non-treated) as determined from *t*-test. All compounds gave satisfactory CHN (±0.4%) and spectral analysis (see Supporting Information).

showed that removal of the 3- and 6-OH from morphine resulted in decreased P-gp substrate activity,⁵ as morphine is a P-gp substrate.⁷ These studies attest that the *m*-OH substituent increases P-gp substrate activity across the phenylpiperidine and morphinan classes of opioids. Furthermore, the development of opioids lacking P-gp substrate activity should not possess a *m*-OH substituent. The interaction between opioids and P-gp is currently under investigation and these results aid in further SAR development. The ultimate goal is to develop a potent opioid with low P-gp substrate activity for use as a tool to study the contribution of P-gp up-regulation to the development of opioid tolerance and crosstolerance between opioids with P-gp substrate activity and those without.

Acknowledgments

The authors thank the National Institute on Drug Abuse, National Institutes of Health (NIDA, NIH) for financial support (DA-13583), and also the University of Maryland School of Pharmacy for partial support. SLM is supported by a Fellowship from the University of Maryland, School of Pharmacy. A.C. is supported by an Independent Scientist Award (K02 DA019634).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2008. 04.046.

References and notes

- Aquilante, C. L.; Letrent, S. P.; Pollack, G. M.; Brouwer, K. L.. Life Sci. 2000, 66, PL47.
- Hassan, H. E.; Myers, A. L.; Lee, I. J.; Coop, A.; Eddington, N. D. J. Pharm. Sci. 2007, 96, 2494.
- 3. Ambudkar, S. V.; Kimchi-Sarfaty, C.; Sauna, Z. E.; Gottesman, M. M. Oncogene 2003, 22, 7468.
- 4. Mercer, S. L.; Hassan, H. E.; Cunningham, C. W.; Eddington, N. D.; Coop, A. *Bioorg. Med. Chem. Lett.* 2007, 17, 1160.
- Cunningham, C. W.; Mercer, S. L.; Hassan, H. E.; Traynor, J. R.; Eddington, N. D.; Coop, A. J. Med. Chem. 2008, 51, 2316.
- Hassan, H. E.; Mercer, S. L.; Cunningham, C. W.; Coop, A.; Eddington, N. D. Int. J. Pharm. Sci. 2008, accepted for publication.
- 7. Dagenais, C.; Graff, C. L.; Pollack, G. M. Biochem. Pharmacol. 2004, 67, 269.
- Schinkel, A. H.; Smit, J. J.; van Tellingen, O.; Beijnen, J. H.; Wagenaar, E.; van Deemter, L.; Mol, C. A.; van der Valk, M. A.; Robanus-Maandag, E. C.; te Riele, H. P. *Cell* 1994, 77, 491.
- 9. Janssen, P. A.; Eddy, N. B. J. Med. Pharm. Chem. 1960, 2, 31.
- 10. Casy, A. F.; Parfitt, R. T. *Opioid Analgesics: Chemistry and Receptors*; Plenum Press: New York, 1986, (Chapter 6).
- 11. Kharasch, M. S.; Reinmuth, O. *Grignard Reactions on Nonmetallic Substances*; Prentice Hall: New York, 1954, (Chapter 10).
- 12. Rice, K. C. J. Med. Chem. 1977, 20, 164.
- Ambudkar, S. V.; Dey, S.; Hrycyna, C. A.; Ramachandra, M.; Pastan, I.; Gottesman, M. M. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 361.
- Polli, J. W.; Wring, S. A.; Humphreys, J. E.; Huang, L.; Morgan, J. B.; Webster, L. O.; Serabjit-Singh, C. S. J. Pharmacol. Exp. Ther. 2001, 299, 620.