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Abstract: Reactions of a-vinylbenzyl alcohol with other alcohols using iodine as a catalyst were investigated.
The corresponding cinnamyl ethers were obtained as products. This suggested that a-vinylbenzyl alcohol
was converted to cinnamyl ethers via 1-phenylallyl cation. Cinnamyl ethyl ether was obtained in 75% yield
by the reaction of a-vinylbenzyl alcohol and ethanol in acetonitrile with iodine under the following
conditions: temperature = 50 °C, molar ratio of a-vinylbenzyl alcohol:ethanol:iodine = 1:3.0:0.2, and time
period = 6 h. Generally, the yields of the reactions using primary alcohols were higher than those using
secondary and tertiary alcohols. Ether interchange also occurred by the reaction of a-vinylbenzyl alcohol
and iodine, but proceeded smoothly only when an allyl group was used as the other substituent of the

starting ether.
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1 INTRODUCTION

Ether compounds are important in the perfume industry.
In particular, cinnamyl ethers are used widely. Cinnamyl al-
cohol, which is a component of cinnamyl ethers, is synthe-
sized from oa-vinylbenzyl alcohol by allyl rearrangement us-
ing catalysts such as molybdenum complexes” , Thenium
oxo catalysts”, cobalt chloride”, tin (I ) chloride with cata-
lytic iridium ( I >4>, and o-benzenedisulfonimide” . However,
these catalysts are very expensive and/or toxic. Therefore,
in this study, we investigated the synthesis of cinnamyl
ethers from a-vinylbenzyl alcohol in one step without the
isolation of cinnamyl alcohol using iodine as a catalyst. Io-
dine is easy to handle and has low toxicity, and it has been
found to be an efficient catalyst in several organic reac-
tions®'®. We previously reported iodine to be an efficient
catalyst in the intramolecular etherification of 1,3-diolsm.
Sunghwa et al. reported that iodine is an efficient catalyst

in the etherification of morroniside'.

2 EXPERIMENTAL
2.1 General

NMR spectra were obtained using a 400- or 300-MHz
NMR spectrometer (JEOL JNM-LA-400 or Bruker
DPX-300) with an internal standard. IR spectra were re-
corded on a JASCO FT/IR-230 spectrometer. Mass spectra
(EI-MS) were recorded on JEOL JMS-HX110A and JEOL
JMS-AX500 spectrometers.

2.2 Materials
a-Vinylbenzyl alcohol (1) used in this study is commer-
cially available (SIGMA-ALDRICH Japan K. K.).

2.3 Etherification

A typical procedure is as follows.

2 mL of acetonitrile, 3.0 mmol of ethanol, 134.2 mg (1.0
mmol) of 1, and 51 mg (0.2 mmol) of iodine were placed in a
reaction tube and it was then sealed. The reaction mixture
was stirred at 50C for 6 h. 10 mL of a 10% aqueous solu-
tion of sodium thiosulfate (10 mL)was added to the reac-
tion mixture in order to remove iodine, and the mixture
was then extracted with 20 mL of diisopropyl ether three
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times. The organic layer was washed with 100 mL of water,
dried with anhydrous sodium sulfate, and evaporated. The
product was purified by column chromatography eluted
with hexane/ethyl acetate (200:1). A total of 212 mg(0.75
mmol; 75% yield) of cinnamyl ethyl ether 2 was obtained.
2.3.1 Cinnamyl ethyl ether(2)

'H-NMR (8,CDCL,): 1.25(3H, t, J="7.0 Hz), 3.55(2H, q, J
=7.0 Hz), 4.14(2H, dd, J=1.4, 6.0 Hz), 6.31 (1H, dt, J=
6.0, 15.9 Hz)6.60 (1H, dt, J=15.9, 1.4 Hz), 7.21-7.41 (5H,
m)

"C-NMR (8,CDCly): 15.7, 66.1, 71.7, 126.7, 126.9, 128.0,
129.0, 132.6, 137.2

IR (neat, cm™"): 1121

HRMS caled for C,,H,,0:162.1045; found: m/z 162.1045.
2.3.2 Cinnamyl methyl ether(3)

"H-NMR (8,CDCl,): 3.39(3H, s), 4.10(2H, dd, J=1.4, 4.6
Hz), 6.29(1H, dt, J=6.0, 15.9 Hz), 6.61 (1H, dt, J=15.9,
1.4 Hz),7.21-7.41(5H, m)

®C-NMR (8,CDCL,): 58.0, 73.1, 125.9, 126.5, 127.7, 128.6,
132.5,136,7

IR (neat, cm™"): 1120

HRMS calcd for C,oH,,0: 148.0888; found: m/z 148.0895.
2.3.3 Cinnamyl propyl ether (4)

'"H-NMR (8,CDCl,): 0.95(3H, t, J=7.4 Hz), 1.64(2H,
sext., J=7.2 Hz), 3.45(2H, t, J=6.8 Hz), 4.14(2H, dd, J =
1.3, 6.0 Hz), 6.31(1H, dt, J=6.0, 15.9 Hz), 6.60 (1H, dt, J
=15.9, 1.3 Hz), 7.21-7.40 (5H, m)

“C-NMR (8,CDCl,):11.1, 23.4, 71.8, 72.6, 126.3, 126.9,
128.0, 128.5, 129.0, 132.5

IR (neat, cn™"):1117

HRMS calcd for C,,H,0: 176.1201; found: m/z 176.1190.
2.3.4 Butyl cinnamyl ether(5)

"H-NMR (8,CDCl,): 0.93(3H, t, J=7.3 Hz), 1.40(2H,
sext., J=7.4 Hz), 1.56-1.64(2H, m), 3.48(2H, t, J=6.6
Hz), 4.13(2H, dd, J=1.3, 6.0 Hz), 6.30 (1H, dt, J=6.0, 15.9
Hz), 6.60 (1H, dt, J=15.9, 1.3 Hz), 7.21-7.43 (5H, m)

YC-NMR (8,CDCl,): 14.4, 19.8, 32.3, 70.7, 71.4, 126.9,
128.0, 128.9, 132.5, 137.3

IR (neat, cm™"): 1117

HRMS caled for C;H,30: 190.1358; found: 7/ 190.1351.
2.3.5 Cinnamyl pentyl ether (6)

"H-NMR (8,CDCl,): 0.91(3H, t, J=7.0 Hz), 1.31-1.38 (2H,
m), 1.58-1.65(2H, m), 3.48(2H, t, J=6.7 Hz), 4.13(2H, dd,
J=1.3,6.0 Hz), 6.31 (1H, dt, J=6.0, 15.9 Hz), 6.60 (1H, dt,
J=15.9,1.3Hz), 7.23-7.41 (5H, m)

YC-NMR (8,CDCl,): 14.5, 23.0, 28.8, 29.9, 71.0, 71.8,
126.9, 128.0, 128.9, 132.5, 137.2

IR (neat, cm ™ '): 1108

HRMS calcd for C,,Hy,0: 204.1514; found: m/z 204.1523.
2.3.6 Cinnamyl hexyl ether (7)

"H-NMR (8,CDCl,): 0.88(3H, t, J=6.7 Hz), 1.28-1.32 (2H,
m), 1.35-1.38 (4H, m), 1.57-1.66(2H, m), 3.47(2H, t, J =
6.7 Hz), 4.13(2H, dd, J=1.3, 6.2 Hz), 6.30(1H, dt, J=6.0,
159 Hz), 6.60(1H, dt, J=15.9, 1.3 Hz), 7.21-7.41 (5H, m)

550

YC-NMR (8,CDCly): 14.5, 23.1, 26.6, 29.7, 32.3, 71.0,
71.8,126.9,128.0, 128.9, 132.5, 137.2

IR (neat, cm™'): 1111

HRMS calcd for C;;H,,0: 218.1671; found: m/z 218.1668.
2.3.7 Cinnamyl octyl ether(8)

'"H-NMR (8,CDCl,): 0.89(3H, t, J=6.7 Hz), 1.26-1.41
(10H, m), 1.57-1.64(2H, m), 3.47(2H, t, J=6.7 Hz), 4.13
(2H, dd, J=1.2, 6.0 Hz), 6.31(1H, dt, J=6.0, 15.9 Hz),
6.60(1H, dt,/=15.9, 1.2 Hz), 7.21-7.41 (5H, m)

YC-NMR (8,CDCly): 14.5, 23.1, 26.3, 30.2, 32.2, 71.0,
71.8,126.9, 128.0, 128.9, 132.5, 137.2

IR (neat, cm ™ '): 1109

HRMS calcd for C,;Hy0: 246.1984; found: m/z 246.1991.
2.3.8 Cinnamyl nonyl ether(9)

"H-NMR (8,CDCl,): 0.88(3H, t, J=6.7 Hz), 1.27- 1.73
(14H, m), 3.74(2H, t, J=6.7), 4.13(2H,dd, J = 1.3, 6.0 Hz)
6.31(1H, dt, J=6.0, 15.9 Hz), 6.60(1H, dt, J=15.9, 1.3
Hz), 7.21-7.41 (5H, m)

C-NMR (8,CDCl,): 14.5, 23.1, 26.6, 29.7, 29.9, 30.0,
30.2,32.3, 71.0, 71.8, 126.9, 128.0, 128.9, 132.5, 137.2

IR (neat, cm '): 1110

HRMS calcd for C,gHy0: 260.2140; found: /2 260.2149.
2.3.9 Cinnamyl decyl ether (10)

"H-NMR (8,CDCL,): 0.88(3H, t, J=6.8 Hz), 1.26-1.64
(16H, m), 3.47(2H, t, J=6.7 Hz), 4.13(2H, dd, J=1.3, 6.0
Hz), 6.30(1H, dt, J=6.0, 15.9 Hz), 6.60(1H, dt, J=15.9,
1.3 Hz), 7.21-7.40 (5H, m)

“C-NMR (8,CDCly): 14.6, 23.1, 26.6, 29.9, 30.0, 30.2,
32.3,71.0, 71,8, 126.9, 128.0, 128.9, 132.5, 137.2

IR (neat, cm™"): 1113

HRMS caled for C,gHy,0: 274.2297; found: m/z 274.2291.
2.3.10 Cinnamyl 3-methylbutyl ether(11)

"H-NMR (8,CDCl,): 0.92(6H, d, J=6.7 Hz), 1.51-1.73
(3H, m), 3.50(2H,t, J=6.8 Hz), 4.14(2H, d, J=6.0 Hz),
6.30(1H, dt, J=6.0, 15.9 Hz), 6.60(1H, d, J=15.9 Hz),
7.21-7.40 (5H, m)

YC-NMR (8,CDCl,): 23.1, 26.7, 39,0, 69.3, 71.9, 126.9,
127.0, 128.0, 128.9, 132.5, 137,2

IR (neat, cm™'): 1113

HRMS calcd for C,,Hy,0: 204.1514; found: m/z 204.1522
2.3.11 Cinnamyl 2-ethylpentyl ether (12)

"H-NMR (8,CDCL,): 0.86-0.92 (6H, m), 1.25-1.42(6H, m),
1.55-1.57(1H, m), 3.36 (2H, d, J=5.9 Hz), 4.12(2H, dd, J
=14,59Hz), 6.30(1H, dt, J=5.9, 15.9 Hz), 6.60 (1H, dt,
J=15.9,1.4Hz), 7.21-7.41 (5H, m)

YC-NMR (8,CDCly): 11.8, 17.1, 23.1, 26.7, 35.5, 39.0,
69.3, 72.0, 126.9, 127.1, 128.0, 128.9, 132.3, 137.3

IR(neat, cm ™ '): 1114

HRMS calcd for C,qH,,0: 232.1827; found: m/z 232.1822
2.3.12 Cinnamyl neopentyl ether (13)

"H-NMR (5,CDCl,): 0.94(9H, s), 3.13(2H, s), 4.15(2H,
dd,J=14,5.8Hz), 6.29(1H, dt, J=5.8, 15.9 Hz), 6.60 (1H,
dt,J=15.9,1.4 Hz), 7.23-7.41 (5H, m)

PC-NMR (8,CDCl,): 27.3, 32.6, 72.4, 81.4, 126.3, 126.9,
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127.3,127.9, 128.7, 132.0

IR (neat, cm '): 1112

HRMS calcd for C,,Hy,0: 204.1514; found: m/z 204.1520
2.3.13 Cinnamyl 3-phenylpropyl ether (14)

'H-NMR (8,CDCl,): 1.89-1.96(2H, m), 2.72(2H, t, J="7.7
Hz), 3.50(2H, t, J=6.4 Hz), 4.14(2H, dd, J=1.2, 6.0 Hz),
6.31(1H, dt, J=6.0, 15.9 Hz), 6.60(1H, dt, J=15.9, 1.2
Hz), 7.16-7.41 (10H, m)

C-NMR (8,CDCl,): 31.8, 32.8, 69.9, 71.9, 126.2, 126.7,
126.9, 128.1, 128.8, 128.9, 129.0, 132.6, 137.2, 142.4

IR (neat, cm '): 1117

HRMS calcd for C,gH,0: 252.1514; found: m/z 252.1508
2.3.14 Cinnamyl isopropyl ether (15)

"H-NMR (8,CDCl,): 1.21(6H, d, J=6.1 Hz), 3.69(1H,
sept., J=6.1 Hz), 4.14(2H, dd, J=1.3, 6.0 Hz), 6.17(1H,
dt, J=6.0, 15.9 Hz), 6.60(1H, dt, J=15.9, 1.3 Hz),
7.20-7.40 (5H, m)

“C-NMR (8,CDCL,): 22.6, 69.1, 71.4, 126.9, 127.3, 127.9,
128.9, 132.2, 137.3

IR (neat, cm™"): 1125

HRMS calcd for C,,H,0: 176.1201; found: m/z 176.1204
2.3.15 Cinnamyl 1-methylpropyl ether(16)

"H-NMR (8,CDCly): 093(3H, d, J=7.5 Hz), 1.17(3H, d, J
=6.2 Hz), 1.35-1.52(2H, m), 3.39-3.46 (1H, m), 4.15(2H,
dd,J=1.4, 6.0 Hz), 6.31(1H, dt, J=6.0, 15.9 Hz), 6.60 (1H,
dt,J=15.9, 1.4 Hz), 7.22-7.41 (5H, m)

YC-NMR (8,CDCl,): 10.3, 19.7, 29.6, 69.4, 76.6, 126.9,
127.4,127.9, 128.7,132.1, 137.3

IR (neat, cm ™ '): 1121

HRMS calcd for C,3H,40: 190.1358; found: 72/ 190.1366
2.3.16 Cinnamyl 1-methylpentyl ether(17)

"H-NMR (8,CDCl,): 0.91(3H, t, J=7.0 Hz), 1.18(3H, d, J
=6.1 Hz), 1.25-1.39(2H, m), 1.41-1.43(2H, m), 1.55-1.60
(2H, m), 3.46-3.50(1H, m), 4.15(2H, dd, J=1.3, 6.0Hz),
6.30(1H, dt, J=6.0, 15.9 Hz), 6.60(1H, dt, J=15.9, 1.3
Hz), 7.22-7.40 (5H, m)

YC-NMR (8,CDCL,): 14.5, 20.1, 23.2, 28.2, 36.8, 69.3,
75.4,126.9, 127.4, 127.9, 128.9, 132.1, 137.3

IR (neat, cm™"): 1121

HRMS caled for C sH,,0: 218.1671; found: m/z 218.1672
2.3.17 Cinnamyl 1-ethylpentyl ether (18)

"H-NMR (8,CDCL,): 0.87-0.95(6H, m), 1.30-1.39(4H, m),
1.50-1.61(4H, m), 3.44-3.50(1H, m), 4.13(2H, dd, J=1.3,
6.0 Hz), 6.31(1H, dt, J=6.0, 15.9 Hz), 6.60 (1H, dt, J=
15.9, 1.3 Hz), 7.22-7.40 (5H, m)

YC-NMR (8,CDCl,): 10.0, 14.5, 23.4, 26.9, 28.1, 33.6,
71.8,80.7,126.9, 127.5, 127.9, 128.0, 128.9, 132.5

IR (neat, cm ™ '): 1120

HRMS calcd for C,gH,,0: 232.1827; found: m/z 232.1831
2.3.18 Cinnamyl cyclopentyl ether (19)

"H-NMR (8,CDCl,):1.53 (4H, m), 1.73 (4H, m), 4.01 (1H,
m), 4.11(2H, dd, J=1.3, 6.0 Hz), 6.30(1H, dt, J=6.0, 15.9
Hz), 6.59(1H, dt, J=15.9, 1.3 Hz), 7.20-7.40 (5H, m)

“C-NMR (8,CDCl,): 24.0, 32.8, 69.9, 81.3, 126.9, 127.2,

127.9, 128.9, 132.2, 137.3

IR (neat, cm ™ '): 1096

HRMS calcd for C,,H,50: 202.1358; found: m/z 202.1362
2.3.19 Cinnamyl cyclohexyl ether (20)

"H-NMR (8,CDCl,): 1.23-1.35(6H, m), 1.52-1.58(4H, m),
3.40(1H, m), 4.18(2H, dd, J=1.4, 6.0 Hz), 6.31 (1H, dt, J
=6.0, 15.9 Hz), 6.60(1H, dt, J=15.9, 1.4 Hz), 7.20-7.41
(5H, m)

BC-NMR (8,CDCl,): 24.7, 26.2, 32.8, 68.8, 81.9, 126.9,
127.5,127.9,128.9, 132.1, 137.3

IR (neat, e '): 1072

HRMS calcd for C,;H,0: 216.1514; found: m/z 216.1512
2.3.20 (-Butyl cinnamyl ether (21)

'H-NMR (8,CDCl,): 1.27(9H, s), 4.09(2H, dd, J=1.4, 5.9
Hz), 6.30(1H, dt, J=5.9, 15.9 Hz), 6.60(1H,dt, J=15.9,
1.4 Hz), 7.20-7.40 (5H, m)

YO-NMR (8,CDCL,): 28.1, 63.2, 73.8, 126.9, 127.8, 128.1,
128.9,131.4, 1375

IR (neat, cm™'): 1121

HRMS calcd for C,3H,s0: 190.1358; found: m/z 190.1353
2.3.21 Cinnamyl propenyl ether (22)

"H-NMR (8,CDCL,): 3.96-4.08(2H, m), 4.17(2H, dd, J =
1.3,6.0 Hz), 5.19-5.35(2H, m), 5.88-6.02 (1H, m), 6.30 (1H,
dt, J=6.0, 15.9 Hz), 6.60(1H, dt, J=15.9, 1.3 Hz),
7.24-7.41 (5H, m)

YO-NMR (8,CDCly): 69.3, 70.8, 126.0, 126.5, 126.9, 127.7,
128.5, 128.6, 132.5, 137.2

IR (neat, cm ™ '): 1071

HRMS calcd for C,,H,,0: 174.1045; found: m/z 174.1041
2.3.22 3-Butenyl cinnamyl ether (23)

"H-NMR (8,CDCl,): 2.29-2.41(2H, m), 3.54(2H, t, J=6.8
Hz), 4.15(2H, dd, J=1.2, 6.0 Hz), 5.01-5.24(2H, m),
5.80-5.92(1H, m), 6.30 (1H, dt, J=6.0, 15.9 Hz), 6.60 (1H,
dt,J=15.9, 1.2 Hz), 7.21-7.40 (5H, m)

¥C-NMR (8,CDCl,): 34.7, 70.0, 71.9, 116.9, 126.6, 126.9,
128.1, 129.0, 132.7, 135.7, 137.2

IR (neat, cm ™ '): 1110, 1639

HRMS calcd for C,5H,0: 188.1201; found: m/z 188.1208
2.3.23 Dicinnamyl ether (24)

"H-NMR (8,CDCl,): 4.21 (4H, dd, J=1.2, 6.0 Hz), 6.34
(2H, dt, J=6.0, 15.9 Hz), 6.64(2H, dt, J=15.9, 1.2 Hz),
7.21-7.42(10H, m)

YC-NMR (8,CDCl,): 71.2, 126.4, 126.9, 128.1, 129.0,
133.0, 127.8

IR (neat, cm™'): 1271

HRMS calcd for C,gH,50: 250.1358; found: 7/z 250.1359
2.3.24 Benzyl cinnamyl ether (25)

"H-NMR (8,CDCl,): 4.20(2H, dd, J=1.3, 6.0 Hz), 4.58
(2H, s), 6.34(1H, dt, J=6.0, 15.9Hz), 6.84 (1H, dt, J = 15.9,
1.3Hz), 7.21-7.41 (10H, m)

YO-NMR (8,CDCly): 71.2, 72.6, 126.4, 126.9, 128.1, 128.3,
128.6, 128.7, 128.8, 129.0, 130.1, 133.0

IR (neat, cm™'): 1111

HRMS calcd for C,gH,0: 224.1201; found: m/z 224.1195
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2.3.25 Cinnamyl o-methylbenzyl ether (26)

"H-NMR (8,CDCl,): 2.36 (3H, s), 4.21(2H, dd, J=1.1, 6.0
Hz), 4.57(2H, s), 6.34(1H, dt, J=6.0, 15.9 Hz), 6.64 (1H,
dt,J=15.9, 1.1 Hz), 7.19-7.46 (9H, m)

"C-NMR (8,CDCly): 19.3, 71.0, 71.3, 126.2, 126.9, 128.1,
128.3,129.0, 129.1, 130.6, 130.7, 132.9, 136.6, 137.2

IR (neat, e '): 1072

HRMS calcd for C,;H,40: 238.1358; found: m/z 238.1362
2.3.26 Cinnamyl m-methylbenzyl ether (27)

"H-NMR (8,CDCl,): 2.36 (3H, s), 4.20(2H, dd, J=1.1, 6.0
Hz), 4.54(2H, s), 6.37(1H, dt, J=6.0, 15.9 Hz), 6.63(1H,
dt,/=15.9, 1.1 Hz), 7.02-7.44 (9H, m)

“C-NMR (8,CDCL,): 21.8, 71.2, 72.7, 125.3, 126.5, 127.0,
127.7,128.1, 128.7, 128.8, 129.0, 129.3, 132.9, 137.2, 138.6

IR (neat, cm ") : 1074

HRMS calcd for C,;H,30: 238.1358; found: m/z 238.1355
2.3.27 Cinnamyl p-methylbenzyl ether (28)

"H-NMR (8,CDC,): 2.35(3H, s), 4.18(2H, dd, J=1.3, 6.0
Hz), 4.53(2H,s), 6.33(1H, dt, J=6.0, 15.9 Hz), 6.62 (1H,
dt,J=15.9, 1.2 Hz), 7.15-7.41 (9H, m)

"C-NMR (8,CDCly): 21.6, 71.0, 72.5, 126.6, 126.9, 128.1,
128.4,129.0, 129.5, 132.9, 135.6, 137.2, 137.8

IR (neat, cm™'): 1072

HRMS calcd for C,;H,40: 238.1358; found: m/z 238.1361
2.3.28 Cinnamyl p-nitrobenzyl ether (29)

"H-NMR (5,CDCl,): 4.26(2H, dd, J=1.3, 6.1 Hz), 4.67
(2H,s), 6.34(1H dt, J=6.1, 15.9 Hz), 6.65 (1H, dt, J = 15.9,
1.3 Hz),7.21-7.42(5H, m), 7.53(2H, d, J=8.7 Hz), 8.22
(2H, dd, J=7.0 Hz)

"C-NMR (5,CDCly): 71.2, 71.9, 124.1, 125.7, 127.0, 128.2,
128.4,129.1, 133.6, 136.8, 146.4

IR (neat, cm ™ '): 1345, 1520

HRMS calcd for C,;H,;;sNO,: 269.1052; found: m/z
269.1054
2.3.29 Cinnamyl a-vinylbenzyl ether (30)

"H-NMR (5,CDCl,): 4.15(2H, dd, J=1.6, 5.9 Hz), 4.87
(1H, d, J=6.7 Hz), 5.15- 5.26 (2H, m), 5.90-6.22 (1H, m),
6.32(1H, dt, J=5.9, 15.9 Hz), 6.60(1H, dt, J=15.9, 1.6
Hz), 7.21-7.40 (10H, m)

C-NMR (8,CDCL,): 69.3, 82.5, 116.8, 126.6, 126.9, 127.4,
128.0, 128.1, 128.9, 129.0, 132.7, 137.2, 139.3, 141.4

IR (neat, cm™"):1060, 966, 745, 693

HRMS calcd for C,gH,40: 250.1358; found: m/z 250.1357

3 RESULTS AND DISCUSSION

The reaction of a-vinylbenzyl alcohol (1)with ethanol
was performed as follows. Acetonitrile, ethanol, a-vinyl-
benzyl alcohol, and iodine were placed in a reaction tube,
and the mixture was stirred with heating. After the reac-
tion, an aqueous solution of sodium thiosulfate was added
to remove iodine, and the product was isolated. Spectro-
scopic data of the purified product indicated the structure
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of cinnamyl ethyl ether(2). Thus, cinnamyl ethyl ether 2
was obtained from 1 via 1-phenylallyl cation. A possible
reaction mechanism is shown in Scheme 1. a-Vinylbenzyl
alcohol reacts with iodine to form hydroiodide, which acts
as an acid catalyst to produce a benzyl cation intermediate.
The hydroxyl group of ethanol attacks the cation interme-
diate to cause allyl rearrangement. It is possible for both
ethanol and excess a-vinylbenzyl alcohol to attack the cat-
ion intermediate. Therefore, the concentration of ethanol
is considered to be important in the reaction.

Scheme 1

The optimum conditions for the reaction of 1 with etha-
nol were investigated and the results are summarized in
Table 1. As previously reported, the most suitable molar
ratio of the starting material to iodine is 1:0.2". The reac-
tion was attempted under conditions of excess ethanol (en-
try 1). The yield was 73%. The amount of solvent (acetoni-
trile) was decreased by half(1.0 mL), and the amount of
ethanol was varied from 8.3 mmol to 2.0 mmol (entries

Table 1 Synthesis of cinnamyl ethyl ether from
a-vinylbenzyl alcohol.

Entry ~ MeCN (mL) EtOH (mmol) Yield (%)

1 2.0 16.72 73
2 1.0 8.3° 68
3 1.0 3.0 75
4 1.0 2.0 64

216, 7mmol=1.0mL " 8.3 mmol=0.5mL

OH 1, (0.2mmol) &
_ EtOH OEt
MeCN
50°C, 6h
1 2
(1.0 mmol)
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Table 2 Synthesis of alkyl cinnamyl ethers from
a-vinylbenzyl alcohol and primary alcohols.

Entry Alcohol Yield (%)

1 MeOH 74 (3)
OH

2 v 70 (4)

3 et 67(5)
OH

4 e 70 (6)

5 St 70 (7)
OH

6 G 64 (8)

7 St 74(9)
OH

8 v 70 (10)

9 )\/\ 66 (11)
OH

10
. /\V on 53 (13)

12 P >"0oH 62 (14)

I, (0.2 mmol)

OH
_ ROH (3.0 mmol) ©/\/\OR
MeCN (1 mL)
50°C,6h 3-14
1.0 mmol

2-4). While a significant difference in the yield was not ob-
served, the yield was highest with 3.0 mmol of ethanol.
Therefore, the optimum molar ratio of a-vinylbenzyl alco-
hol to the other alcohol used was determined to be 1.0:3.0.

The reactions of a-vinylbenzyl alcohol with various pri-
mary alcohols were carried out under the conditions men-
tioned above. The results are listed in Table 2. The yield
was above 50% in all cases. For straight-chain alcohols, the
chain length did not affect the reaction (entries 1-8). The
yields of the reactions using alcohols having branched
chains (entries 9-12) were somewhat lower than those of
the reactions using straight-chain alcohols.

The reactions of a-vinylbenzyl alcohol with various sec-
ondary alcohols, cyclic alcohols and a tertiary alcohol (¢-bu-
tyl alcohol) were performed. The results are summarized in
Table 3. The yields of the reactions using the secondary al-

Table 3 Synthesis of alkyl cinnamyl ethers from
a-vinylbenzyl alcohol with secondary, tertiary
and cyclic alcohols.

Entry Alcohol Yield (%)

1 /L 52 (15)
OH

2 d 45 (16)
OH

5 /\/Y o

OH
OH

5 O—OH 43 (19)

OH
6 O/ 51 (20)
7 3221

/~\ ol (21

I, (0.2 mmol)

OH
_ ROH (3.0 mmol) ©/\/\ OR
MeCN (1 mL)
1 50°C,6h 15-21

1.0 mmol

cohols (entries 1-4) were somewhat lower than those using
the primary alcohols (Table 2) , but comparable to those us-
ing alcohols with cycloalkyl groups (entries 5 and6). The
yield of the reaction using {-butyl alcohol was the lowest,
32%, among the alcohols used (entry 7). This was attribut-
ed to the steric hindrance of the three methyl groups.

The reactions of a-vinylbenzyl alcohol with unsaturated
alcohols and benzylic alcohols were studied. The results
are listed in Table 4. When aliphatic unsaturated alcohols
were used (entries 1 and 2), the yields were as high as
those of reactions using the corresponding saturated alco-
hols. When cinnamyl alcohol was used (entry 3), the yield
of the expected product, dicinnamyl ether 24, decreased
dramatically, but by-product cinnamyl a-vinylbenzyl ether
30 was obtained in 21 % yield. It is likely that some a-vinyl-
benzyl alcohol did not rearrange due to the high concentra-
tion of cinnamyl alcohol, and that the hydroxyl group of
a-vinylbenzyl alcohol attacked the cation intermediate,
which may have originated from either a-vinylbenzyl alco-
hol or cinnamyl alcohol, as shown in Scheme 2. When ben-
zyl alcohol was used, the yield of the corresponding ether
(benzyl cinnamyl ether 25)was 74% (entry 4). However,
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Table 4 Synthesis of alkyl cinnamyl ethers from
a-vinylbenzyl alcohol with unsaturated and
benzylic alcohols.

Entry Alcohol Yield (%)
1 _~_OH 69 (22)
2 A on 58 (23)
N

OH 74 (25)
4
S @i\OH 48 (26)
. @AOH 63 (27)

6728
. /@A OH 36 (29)
0N

a =
N
W 0 (30) was also obtained (21%).

I, (0.2 mmol)

OH
ROH (3.0 mmol
_ ( ) ©/\/\ OR
MeCN (1 mL)
1 50°C, 6 h 2-30
1 mmol
a =
AN
©/\/\O (30) was also obtained (21%).
AR H ]
Ph/\/\OH HI Ph 9 + 1
H
;g r
+
- H,0 ph/\b/ Ph)\/ Ph/\/\(,) Ph
H
e
0P N0
30
Scheme 2
554

Table 5 Reaction of a-vinylbenzyl alcohol with ethers.

Entry Ether Product Yield (%)
1 By~ 0 ~ Ph/\/\o/ 34
3)
(ONQ S
’ g P "o 15
3

3NN SR s

3

OH I, (0.2 mmol)
_— Ether (3.0 mmol)

MeCN (1.0 mL)
50°C, 6 h

©/\/\OR

1 product

1.0 mmol

when o-methylbenzyl alcohol was used, the yield decreased
to 48% (entry 5). This may be due to the steric hindrance
of the ortho-methyl group because the yield with 7-meth-
ylbenzyl cinnamyl alcohol (27)was 63% (entry 6)and that
with p-methylbenzyl cinnamyl alcohol (28) was 67% (entry
7).

Then, the reactions of a-vinylbenzyl alcohol with ethers
were investigated (Table 5). The product of the reaction of
a-vinylbenzyl alcohol with t-butyl methyl ether was spec-
troscopically determined to be cinnamyl methyl ether(3).
This indicated that, after allyl rearrangement, the lone pair
of electrons on the oxygen atom in {-butyl methyl ether at-
tacked the benzyl cation intermediate. The dissociation of
the starting material ether occurred, resulting in the ether
interchange, which produced 3. However, the yield of 3 by
the reaction of a-vinylbenzyl alcohol with methanol (74%;
entry 1 in Table 2)was higher than that by the reaction of
a-vinylbenzyl alcohol with ¢-butyl methyl ether (34%; entry
1 in Table 5). The reaction of a-vinylbenzyl alcohol with
cyclopentyl methyl ether was also attempted, but the yield
decreased further (entry 2). Therefore, because the stabili-
ty of the eliminated cation after the breakage of the ether
bond is increased, a vinyl group was used as the other sub-
stituent of the starting ether (entry 3). Butyl cinnamyl
ether (5)was produced from butyl vinyl ether in 65% yield.
This value was as high as that of the reaction of a-vinylben-
zyl alcohol with butanol (67%:; entry 3 in Table 2).

Barbero et al. reported that the reaction of a-vinylbenzyl
alcohol with ethanol, using o-benzenedisulfonimide as a
catalyst gave the corresponding cinnamyl ether in 56 %
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yield‘a). As mentioned above, the similar reaction performed
using iodine as a catalyst produced cinnamyl ether in 75%
yield.

In conclusion, the reactions of a-vinylbenzyl alcohol with
various alcohols using iodine as a catalyst produced the
corresponding cinnamyl ethers via 1-phenylallyl cation.
Reactions using primary alcohols proceeded more smooth-
ly than those using secondary or tertiary alcohols. Ether
interchange also occurred by the reaction of a-vinylbenzyl
alcohol and iodine, but proceeded smoothly only when an
allyl group was used as the other substituent of the starting
ether.
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