uct was obtained; b. p. $158-165^{\circ}$ (0.5 mm.). An analytical sample was collected at $160-161^{\circ}$ (0.5 mm.). *Anal.* Caled. for C₁₈H₁₈ON₂: C, 74.35; H, 7.49.

Found: C, 74.61; H, 7.33. 1-Methyl-3-ethyl-3-(2'-dihydroimidazolylmethyl)-oxindole.—By application of the fusion procedure of Oxley and Short¹¹ to 1-methyl-3-ethyl-3-eyanomethyloxindole the corresponding imidazoline was obtained (42%) by evaporation distillation at 95–130° (0.3 mm.) as a viscous oil which solidified on long standing, m. p. 93–97°.

Anal. Caled. for $C_{16}H_{19}ON_3$: C, 70.01; H, 7.44. Found: C, 70.10; H, 7.41.

The picrate was recrystallized from ethanol; m. p. 181– 182.5° .

Anal. Calcd. for $C_{15}H_{19}ON_3 \cdot C_6H_3O_7N_3$: C, 51.85; H, 4.56. Found: C, 52.15; H, 4.90.

1-Methyl-3-ethyl-3-[β -(2'-dihydroimidazolyl)-ethyl]oxindole was prepared in the same way from the corresponding nitrile in 50% yield. The solid product, m. p. 178–180.5°, could not be obtained in analytical purity, but a picrate, m. p. 142.5–143.5°, served for identification.

Anal. Caled. for $C_{16}H_{21}ON_3 \cdot C_6H_3O_7N_3$: C, 52.80; H, 4.83. Found: C, 52.83; H, 5.00.

1-Methyl-3-ethyl-3-[γ -(2'-dihydroimidazolyl)-propyl]oxindole was prepared in the same way (76% yield): m. p. 101-103.5°, identified as the picrate, m. p. 177-178°.

Anal. Caled. for C₁₇H₂₃ON₈·C₆H₃O₇N: C, 53.59; H, 5.28. Found: C, 53.57; H, 5.10.

Cyclization Experiments.—Attempts were made to carry out a cyclization of an acid chloride derived from 1methyl-3-ethyl-3-(β -carboxyethyl)-oxindole with stannic chloride, aluminum chloride and aluminum bromide in various solvents. These were unsuccessful, although normal reactivity of the acid chloride was indicated by the fact that use of aluminum bromide and benzene gave a ketonic product, m. p. 87.5–89°, resulting from reaction with the solvent.

Anal. Calcd. for C₁₇H₂₃O₃N: C, 78.15; H, 6.89. Found: C, 78.01; H, 7.01.

The orange 2,4-dinitrophenylhydrazone melted at 157–158°.

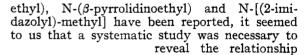
Anal. Caled. for $C_{26}H_{25}O_6N_5\colon$ C, 64.05; H, 5.17. Found: C, 63.92; H, 4.99.

A different cyclization procedure, applied to the formyl derivative obtained from the Claisen condensation of ethyl formate with the methyl ester of 1-methyl-3-ethyl- $3-(\beta-\text{carboxyethyl})-\text{oxindole}$, was also unsuccessful. These experiments were extended to the homologous

These experiments were extended to the homologous acid, 1-methyl-3-ethyl-3- $(\gamma$ -carboxypropyl)-oxindole, m. p. 115–116.5° (*Anal.* Calcd. for C₁₈H₁₉O₈N: C, 68.94; H, 7.33. Found: C, 68.96; H, 7.21), without success.

Summary

The synthesis of 1-methyl-3-ethyl-3-(β -dimethylaminoethyl)-oxindole and related amines and imidazolines is described.


PHILADELPHIA, PENNA. RECEIVED JANUARY 29, 1950

[CONTRIBUTION FROM THE RESEARCH LABORATORIES OF THE UPJOHN COMPANY]

Histamine Antagonists. VII. Phenothiazine Derivatives¹

BY JOHN B. WRIGHT, EDWARD H. LINCOLN, RICHARD V. HEINZELMANN AND JAMES H. HUNTER

A review²⁻⁴ of the literature of antihistamine drugs reveals that the most active compounds possess the N-(β -dimethylaminoethyl) grouping.

between antihistaminic activity and this type

of chemical structure.

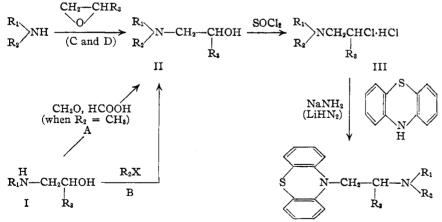
Therefore, a series of

N-disubstituted aminoalkylphenothiazine derivatives has been pre-

These

pounds, together with

the results⁵ of the screen-


ing for antihistaminic activity, are listed in

The amino alcohols

(II) used in this work

were prepared either by treatment of secondary

com-

Although such variations as N-(β -diethylaminoethyl), N-(β -piperidinoethyl), N-(β -morpholino-

(1) For previous papers in this series see Lincoln, Heinzelmann and Hunter, THIS JOURNAL, 71, 2902 (1949).

(2) Huttrer, Ensymologia, 12, 277 (1948).

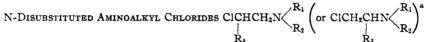
(3) Viaud, Technologie Produits Pharmaceutiques, 2, 53 (1947).

(4) Bovet and Bovet-Nitti, "Medicaments du Systeme Nerveau Vegetative," S. Karger, New York, N. Y., 1948, p. 741. amines with $epoxides^6$ (Procedures C and D) or from secondary aminoalcohols (I) by (a) reductive alkylation⁷ (Procedure A); (b) alkyla-

pared.

Table III.

(5) For conducting these tests, grateful acknowledgment is made to Dr. Milton J. Vander Brook of our Department of Pharmacology and Endocrinology.


(6) Horne and Shriner, THIS JOURNAL, 54, 2928 (1932).

(7) Clarke, Gillespie and Weisshaus, Ibid., 55, 4571 (1933).

				IABLE	1					
	N-DISUBSTITUTED AMINOALKANOLS HOCHCH ₂ N $\begin{pmatrix} R_1 \\ \\ R_3 \end{pmatrix}$									
\mathbf{R}_1	R ₂	R:	°C. ^{B. p.}	Mm.	n ²⁵ D	Pro- cedure	Vield, %	Formula	Nitro analys Calcd.	ogen es, % Found
CH₃	$(CH_3)_2CH$	\mathbf{H}	84	46	1.4379	$A^{a,b}$	73	$C_6H_{15}NO$	11.95	11.89
CH3	$n-C_4H_9$	н	97	39	1.4381	в	55	C7H17NO	10.68	10.77
CH_3	iso-C4H9	\mathbf{H}	88	45	1.4302	В°	42	C7H17NO	10.68	10.69
CH3	$CH_2 = CHCH_2$	н	93	54	1.4523	\mathbb{B}^d	44	C ₆ H ₁₃ NO	12.16	12.29
C ₂ H ₅	CH2=CHCH2	Η	74-74.5	15	1.4528	B	60	$C_7H_{15}NO$	10.84	11.15
$CH_2 = CHCH_2 - CHCH_2$	$CH_2 = CHCH_2 - $	н	114 - 115	49	1.4671	C'	78	C ₈ H ₁₅ NO	9. 92	9.64
CH_3	$(CH_3)_2CH$	CH₃	77	42	1.4242	\mathbf{A}^{b}	66	C7H17NO	10.68	10.69
$n-C_3H_7$	iso-C3H7	н	80.5-81	17	1.4390°	D^h	59	C ₈ H ₁₉ NO	9.65	9.68
$n-C_{3}H_{7}$	$CH_2 = CHCH_2 - $	н	82-83.5	14	1.4550^{g}	Bʻ	40	C ₈ H ₁₇ NO	9.78	9.65
iso-C ₃ H7	$CH_2 = CH - CH_2 -$	- H	77.5-80	16	1.4551^{o}	\mathbf{B}^{i}	53	C ₈ H ₁₇ NO	9.78	9.78
CI_S_CH2-	$n-C_3H_7$	Н	169–172	14	•••••	\mathbf{B}^{k}	71	$C_{10}H_{16}\mathrm{CINOS}$	5.99	6. 02

^a This compound has been reported recently by Biel.¹⁴ ^b Prepared by Robert D. Birkenmeyer. ^c Methylethanol-amine and isobutyl iodide were used. ^d Methylethanolamine and allyl bromide were used. ^e Ethylethanolamine and allyl bromide were used. ^{*i*} This compound has been reported previously by Ladenburg, Ber., 14, 1879 (1881). ^{*i*} n^{20} D. ^{*i*} 2-Isopropylaminoethanol and propyl iodide were used. ^{*i*} 2-*n*-Propylaminoethanol and allyl bromide were used. ^{*i*} 2-*n*-Propylaminoethanol and 5-chlorothenyl chloride were used

TABLE II

Rı	R_2	R;	°C. ₿. p.	Mm.	Yield, %	Salt	М. р., °С.	Formula	Nitr analys Calcd.	ogen ses, % Found
CH,	(CH ₂) ₂ CH	н	61	30	50.7^{b}	HC1*	122-124	C6H14NCl·HCl	8.14	8.27
C2H1	(CH ₈) ₂ CH ^c	H¢	87-89	72	69 ^b	Picrate	116-118	C7H16NCI-C6H3N3O7	14.79	14.70
CH:	C6H5CH2	н			94 ^d	HCI	140-141	C10H14NCl·HCl	6.36	6.70
CH:	n-C4Hs	H			83 ^d	HCl^{h}	119-120	C7H16HCl·HCl	7.53	7.37
CH:	iso-C4H	н		••	94 ^d	Picrate ^f	113-114.5	$C_7H_{16}NCl \cdot C_6H_3N_3O_7$	14.79	15.08
CH.	CH2=CHCH2-	н	65	33	96^d	HCli	115-116	C ₆ H ₁₂ NCl·HCl	8.24	8.39
C ₂ H ₅	$CH_2 = CHCH_2 - $	н	65	16	73 ^d	HCl ⁱ	126-127.5	C7H14NCl·HCl	7.61	7.79
$CH_2 = CHCH_2 -$	CH2=CHCH2-	н	97	42	68.6^{b}	HC1 ^k	97.5-98.5	C ₈ H ₁₄ NCl·HCl	7.14	7.09
CH3	(CH3)2CH	CH3	88	77	80 ^b			C7H16NC1	9.36	9.64
n-C3H7	n-C3H7	н	71.5-73.5	18	77 ⁵	HCI ⁱ	123 - 124	C8H18NCl·HCl	6.99	6.87
$n - C_3 H_7$	iso-CaH7	н	72-73	20	66^{b}	HCl^{i}	172 - 173	C8H18NCl·HCl	6.99	7.03
n-C3H7	$CH_2 = CHCH_2 - $	н	69.5-71	15	93 ⁶	HCl ⁱ	115.5 - 116	C8H16NCl·HCl	7.07	7.07
iso-C2H7	iso-C2H7	н	66-67	13	45 ^b	HCli	132	C8H18NCI+HCl	6.99	6.83
iso-CaH7	CH2=CHCH2-	н	70	18	48 ^b	HCli	137-138	C8H16NCl·HCl	7.07	7.27
CI SCH_	<i>n</i> -C ₈ H ₇	н	16 4–167	14	750	HCI	118-118.5	$C_{10}H_{15}NCl_2 \cdot HCl$	4.85	5.06

^a Recent work [cf. Fuson and Zirkle, THIS JOURNAL, 70, 2760 (1948); ref. (2)] indicates that either structure is possible. ^b Vield based upon the weight of distilled free base. ^c The requisite 2-isopropylethylaminoethanol was prepared by pro-cedure B in 71% yield from 2-isopropylaminoethanol and ethyl iodide (b. p. 74° at 20 mm.). This alcohol has been re-ported previously by Brill [THIS JOURNAL, 54, 2486 (1932)]. ^d Based on the weight of crude hydrochloride salt. ^e Re-crystallized from methyl ethyl ketone-ethyl acetate (2:3). ^f Recrystallized from absolute ethanol. ^g Recrystallized from acetone-absolute ethanol (10:1). ^h Recrystallized from ethyl acetate-absolute ethanol (50:1). ^f Recrystallized from machula ethyl actors at an of the recrystallized from ethyl acetate (4:1). from absolute ethanol-anhydrous ether. i Recrystallized from methyl ethyl ketone-ethyl acetate (4:1) * Recrystallized from ethyl acetate.

tion with the requisite halide (Procedure B). Procedures A and B were particularly convenient since the secondary amino alcohols were either commercially available8 or readily prepared by the excellent method of Cope and Hancock.9,10 Any

(8) The N-methylethanolamine and N-ethylethanolamine used in this work were obtained from Carbide and Carbon Chemicals Corp. and Sharples Chemicals, Inc., respectively.
(9) Cope and Hancock, THIS JOURNAL, 64, 1503 (1942).

(10) "Organic Syntheses," Vol. 26, p. 38.

unreacted secondary aminoalcohol present in Procedure B was separated from the desired product by acetylation and extraction of the acidified solution. The resulting tertiary aminoalcohols (II) are listed in Table I.

The conversion of the aminoalcohols to the corresponding chlorides (III) was effected with thionyl chloride. The aminoalkyl chlorides thus prepared are listed in Table II. They reacted

TADID I

TABLE III

•		•															-
	Activity ⁶	$\frac{3}{1/2}$	<1/100	1/3-1/2	$\frac{1}{1}$	1/4	<1/200	_	<1/2, >1/20	<1/10	<1/20	1/10	<1/2, >1/20	• •	-		 Standards for Comparison β-Dimethylaminoethyl benzhydryl ether hydrochloride β-Dimethylaminoethyl)-phenothiazine hydrochloride (2-Dimethylaminoethyl)-phenothiazine hydrochloride (2-Pyrrolidinoethyl)-phenothiazine hydrochloride (3015 RP)[*] 3-5 N-(2-Pyrrolidinoethyl)-phenothiazine hydrochloride (3015 RP)[*] 4-5 (3277 RP), phenothiazine (3277 RP), phenothiazine (3277 RP), phenothiazine (3277 RP), assigned rather than the 1-dialkylamino-2-propyl-structure because of the analogy to the structure of N-(2-1), assident durine diversity from ethyl acetate-absolute ethanol (2:1). <i>I</i> Based on the yield of distilled product. <i>*</i> Lithium amide was used instead of sodium amide. <i>*</i> Recrystallized from ethyl acetate-absolute ethanol (2:1). <i>I</i> Based on the yield of distilled from methanol. <i>*</i> Recrystallized from acetone (11:1:5). <i>'</i> Not tested from ethyl acetate-absolute ethanol (2:1). <i>I</i> Recrystallized from methanol- <i>*</i> Caraptericer, Compt. Acetosperalized from ethyl acetate-absolute ethanol (2:1). <i>I</i> Based on the yield of distilled from methanol. <i>*</i> Recrystallized from thyl acetate-absolute ethanol (2:1). <i>I</i> Recrystallized from methanol- <i>Recrystallized from thyl acetate-absolute ethanol</i> (2:1). <i>I</i> Recrystallized from methanol- <i>Recrystallized from thyl acetate-absolute ethanol</i> (2:1). <i>I</i> Recrystallized from methanol- <i>Recrystallized from thyl acetate-actone</i> (1:1:5). <i>I</i> Not tested because of the extreme insolubilit
	z	8.31 9.92	8.13	7.79 7.06	8.58	16.7	7.76	06°6	7.98	8.14	7.80	8.04	7.80	6.14	6 14	0. I#	o the s ncorre ate-at oyl eth). " rt. r' rt. r' ted at
	Found, % H	6.59 7.23		7.03	6.11				7.72			7.33	6.81	5.91	5 19		logy t ^b U ^b U ^b U ^c C ^c C
	C Fou	64.56 6 65.26 7		65.50 7 65.24 7									-	73.55	58 55 1		he ana (1947) m ethy cohol- cohol- alcoh ethanc ethanc e inso paper]
													-				se of t , 306 , 306 from propy from extrem extrem
	N %	2 8.37 2 8.03		2 8.03 8.03									-	3 6.10	6 6 91		1 3–5 4–5 4–5 te becau md., 225 md., 225 md., 225 md., 225 md., 225 te ate-isc te ate-is
R ₁ ^d	Caled., % H	6.92 7.22		7.22			-						-	3 5.93	5 26 26		1 3. 3. 4 4 4 <i>remo</i> 4 <i>remo</i> A from A from
HH	ັບ	64.55 65.40	76.26	65.40 65.40	64.94	65.78	66.92	73.03	66.20	66.20	66.55	66.20	66.55	73.26	52 53	90°.99	" yl- str <i>Comp</i> alt. " f R R R ttallize R R R ted bet ted bet ted bet
N−CH₂−CH R³		៦ ៦		5 5	វប	ฮ	Ū		ū	ū	IJ	บ	บ	Ū	HCI.		Standards for Comparison β -Dimethylaminoethyl benzhydryl ether hydrochloride N-(2-Dimethylaminoethyl)-phenothiazine hydrochloride (3015 RP) ^{u} 3–5 N-(2-Pyrrolidinoethyl)-phenothiazine hydrochloride (Byrrolazote) N-(2-Pyrrolidinoethyl)-phenothiazine hydrochloride (Byrrolazote) N-(2-Pyrrolidinoethyl)-phenothiazine hydrochloride (Pyrrolazote) N-(2-Pyrrolidinoethyl)-phenothiazine hydrochloride (Pyrrolazote) N-(2-Pyrrolidinoethyl)-phenothiazine hydrochloride (Pyrrolazote) N-(2-Pyrrolidinoethyl)-phenothiazine hydrochloride (Pyrrolazote) N-(2-Pyrrolidinoethyl)-phenothiazine hydrochloride (Pyrrolazote) N-(2-Pyrrolidinoethyl)-phenothiazine hydrochloride (Pyrrolazote) N-(2-Pyrrolidinoethyl)-phenothiazine hydrochloride salt. δ -(1), prepared by the same general method f . Charpentier, $Compt$ rende, 253, 306 (1947), β -(1), prepared by the same general method f . Charpentier, $Compt$ rende, 255, 306 (1947), β -(1), prepared by the same general method f . Charpentier, $Compt$ rende, 25, 306 (1947), β -(1), prepared from ethanol. δ -(1), δ
	Formula	C ₁₈ H ₂₂ N ₂ S·HCl Cl ₉ H ₂₄ N ₃ S·HCl	N ₂ S	CINH24N2S HCI	ClaH20N2S-HCI	C ₁₉ H ₂₂ N ₂ S·HCl	C20H22N2S-HCI	N ₂ S	C20H26N2S·HCI	C20H26N2SHCI	C20H24N2S-HCI	CMH2SN2S-HCI	C20H24N2S-HCI	C28H26N2S-HCI	210-IN		le (action of the formula for
	For	C ₁₈ H ₂₂ N ₂ S·HCl C ₁₉ H ₂₄ N ₂ S·HCl	C ₂₂ H ₂₂ N ₂ S	C,,H2,) C,,H2,)	C ₁₈ H ₂₀	C ₁₀ H ₂₂	C20H22	C ₁₉ H ₂₄ N ₂ S	C20H26	C20H26	C20H24	C20H25	C20H24	C28H26	U.H. OIS. N. OIS. HOI	· 21123	Standards for Comparison β -Dimethylaminoethyl benzhydryl ether hydrochloride N-(2-Dimethylaminoethyl)-phenothiazine hydrochloride (3015 R1 N-(2-Pyrrolidinoethyl)-phenothiazine hydrochloride (Pyrrolazote) (when RP=OCH ₃) is assigned rather than the 1-dialkylamino-2-pro (when RP=OCH ₃) is assigned rather than the 1-dialkylamino-2-pro (3277 RP), prepared by the same general method β . Charpentie intestinal strip. ⁴ Based on the amount of crude hydrochloride uct. ^a Lithium amide was used instead of sodium amide. ^h Recr m methanol. ^b Recrystallized from acetome. ¹ Recrystallized from systallized from ethanol. ^a Calcd. for S, 10.26. Found: S, 10.1 systallized from methanol. ^a cectome-ether mixture (1:1:5). ⁴ Not te not hiazine hydrochloride (3277 R. P.) has been reported to have a d Experimental Therapeutics, Indianapolis, Ind., Nov. 17–19, 193
San	م ن	-		¥.	-	.5"		"," (ь(л 2	, O,	Comp hydro hydro thochl the 1-c the 1-
DTHIAZ	M. p., °C. hydro- chlorideb	178–179° 172.5–173.5 ^h	$91.5 - 92.5^{i,j}$	142.5-144 ^k 153_154 ^k	178–179 ^t	26.5-127	125–126 ^k	69.5- 70 ^{1,1}	171-1724	202.5^{9}	146-148 [°]	.97.5-199 [¶]	70-171	a,	147 5-148 58	· 0-140	tds for ether hiazino ine hyo than than than tead o for S, ther n P.) ha
-PHENC	~ •	— · ·			178	126	125	69	171	202	146-	197	170	200°	717	14/	tanda tydryl henot henot henot henot rather rather same same sed fro calcd. tone-e tone-s, India
LKYL)	Vield,	86 ^d 41 ^{f,g}	49 ^d , ^g	25/ ,e 28/	8 ⁶	.89	42^{f}	51	59 ,	. 13	68 <u>,</u>	45'	55'	:	515	.10	[benzl thyl)-f thyl)-f pheno- pheno- igned of the systalliz of p (32 of acc de (32 of peutic
WINOA	Mm.	0.1		0.7	1.0	0.1	2.6	÷	0.5		-	0.5	0.9	÷		:	(oethy) minoel bethyl) i is ass ared i a di t ared Recry ethan cethan cethan cethan
LKYLA	°C. ^{B. p.}	۲ <u>م</u> .		ອ ອີ	. 9	55	ŝ	i	2	6	.5 - 216.5	H	ŝ	:		:	ylamin ethyla olidinc = CH_3 = CH_3), prep 1, prep 1, strip 1, strip
N-(Dialkylaminoalkyl)-phenothiazines S	\$	168-172		185-195 162-164	187-190	165–185	220-223	:	204-207	203-209	212.5 -	180-181	212-213	:			β -Dimeth N-(2-Dim N-(2-Pyrr (when R^3 (3277 RP (3277 RP (3277 RP (3277 RP) (3277 RP) (3
4	R,	н	H	нц	H	Н	Н	CH3	Н	н		Н	н	Н	н	đ	 Standards for Comparison Standards for Comparison B-Dimethylaminoethyl benzhydryl ether hydrochloride N-(2-Dimethylaminoethyl)-phenothiazine hydrochloride (Pyrrolazote) The 2-dialkylamino-1-propyl structure (when R¹= CH₃) is assigned rather than the 1-dialkylamino-2-propyl- structure because of the analogy to the thylamino-1-propyl)-phenothiazine (Pyrrolazote) The 2-dialkylamino-1-propyl structure (when R¹= CH₃) is assigned rather than the 1-dialkylamino-2-propyl- structure because of the analogy to the structure (when R¹= CH₃) is assigned rather than the 1-dialkylamino-2-propyl- structure because of the analogy to the structure (when R¹= CH₃) is assigned rather than the 1-dialkylamino-2-propyl- structure because of the analogy to the structure (when R¹= CH₃) is assigned rather than the 1-dialkylamino-2-propyl- structure because of the analogy to the structure (when R¹= CH₃) is assigned rather than the 1-dialkylamino-2-propyl-structure because of the analogy to the structure (when R¹= CH₃) is assigned rather than the related out on isolated guinea pig intestinal strip. ⁶ Based on the amount of crude hydrochloride salt. ⁶ Recrystallized from methanol. ⁸ Recrystallized from matile. ⁸ Recrystallized from the anol. ¹⁰ Cloud: S. 10.26. Found: S. 10.17. ⁶ Recrystallized from the anol- action - cher mixture (11:5). ¹⁰ Not tested because of the extreme insolubility of water. ⁸ N-(2-Dimethylaminopropyl)-phenothiazine hydrochloride (3277 R. P.) has been reported to have an activity of 2.7 (Marsh, paper presented the American Society for Pharmacology and Experimental Therapeutics, Indianapolis, Ind., Nov. 17–19, 1949.
					∐₂—	I2	∃ ²				I_2 —		I				struct guinez guinez filled t fallized (_ * J ropyl)-
	R2	4 H	H,	• 1	CH2=CHCH2	CH2-CHCH2	CH2=CHCH2	H,	-	H,	CH ₂ =CHCH ₂	H	CH₂=CHCH₂−	H2	. 1	7	propyl)-phen olated olated dis kecryst e bass e bass minop
		iso-C ₃ H ₇	C ₆ H ₅ CH ₂	n-C,H,	CH2=	$CH_{2}=$	CH₂=	iso-C _s H ₇	$n-C_{3}H_{7}$	iso-C _a H ₇	CH2=	iso-C ₃ H ₇	CH ₂ =	C ₆ H ₆ CH ₂	H ^C	n-C3D	ino-1-j tronyi tronyi tronyi ke. j se. j aceton aceton trhyi try for j
							L]		Jkylan nino-1. rried on t et ate- et ate- sciete- sciete- sciete-
	R						HCH					4	7	∃ ₽	UH.	5	e 2-dis et bylan erte car / Bass / Ba
		CH,	CH.	Η̈́Ξ	J H	C,H,	CH ₁ -CHCH ₂ -	CH,	-C ₄ H ₇	"-C ₄ H ₇	*-C ₃ H ₇	iso-C ₃ H ₇	iso-C _a H,	C ₆ H ₆ CH ₂		S.	• Th • Th (2-dim (2:1). [2:1].
			9	<u> </u>		-	-	-	44	*	*	. 44	- 46	•		-	

with phenothiazine in the presence of sodamide (or lithium amide), according to known procedures.11

The introduction of groups larger than methyl on the terminal amino nitrogen does not increase the effectiveness of these phenothiazine derivatives as antihistamines; more often the activity is lowered as is shown in Table III.

Experimental^{12,13}

Procedure A. N-Isopropyl-N-methylethanolamine was prepared by treatment of 2-isopropylaminoethanol¹⁰ with formic acid and formaldehyde according to the method of Biel.14

Procedure B. N-(n-Butyl)-N-methylethanolamine.---A mixture of 49.8 g. (0.664 mole) of methylethanola-mine,⁸ 61.1 g. (0.332 mole) of *n*-butyl iodide and 200 ml. of dry benzene was refluxed for three hours. When cool, the mixture was transferred to a separatory funnel, the upper benzene layer separated and the lower layer ex-tracted with benzene. The benzene extracts were com-bined and the solvent removed through a short Vigreux column. To the residue was added 75 ml. of acetic anhydride, the solution heated on the steam-bath for two hours and, when cool, poured into 500 ml. of a 5% hydro-chloric acid solution. The resulting solution was extracted with ether and these ethereal extracts discarded. The acid extract was basified with solid potassium carbonate, a large excess being added to saturate the solution, and the resulting mixture extracted with ether. The ether was removed and the residue refluxed for five hours with 25%sodium hydroxide solution. The resulting mixture was extracted with ether, the extracts dried over anhydrous magnesium sulfate, the solvent removed and the residue distilled *in vacuo*; yield 23.9 g. (55%), b. p. 97° (39 mm.). **Procedure C.** β -Diallylaminoethanol.—The general

method of Horne and Shriner⁶ was employed using 48.6 g. (0.5 mole) of diallylamine¹⁵ and 29.3 g. (0.67 mole) of ethylene oxide; yield, 54.8 g. (78%), b. p. 114-115° (49 mm.).

Procedure D. N-Isopropyl-N-(n-propyl)-ethanolamine.—Procedure B was modified in that 30.9 g. (0.30

(11) (a) British Patent 608,208; (b) Reid, Wright, Kolloff and Hunter, THIS JOURNAL, 70, 3100 (1948); (c) Dahlbom, Acta Chem. Scand., 3, 247 (1949); (d) French Patent 917,595.

(12) All melting points and boiling points are uncorrected.

(13) Appreciation is expressed to Mr. Harold C. Emerson and his staff for analyses reported.

(14) Biel, This JOURNAL, 71, 1308 (1949).
(15) "Organic Syntheses," Coll. Vol. I, 1944, p. 201.

mole) of 2-isopropylaminoethanol, 63.6 g. (0.60 mole) of anhydrous sodium carbonate, 53.6 g. (0.315 mole) *n*-propyl iodide and 40 ml. of xylene were refluxed together for five hours. When cool, the reaction mixture was filtered. To the filtrate was added 50 ml. of acetic anhydride, the solution heated on the steam-bath for one hour and then worked up as described in Procedure B; yield, 25.5 g. (59%), b. p. $80.5-81^{\circ}$ (17 mm.). β -(Ethylisopropylamino)-ethyl Chloride.—To a stirred

solution of 29.8 g. (0.25 mole) of thionyl chloride in 60 ml. of dry benzene cooled in an ice-bath was added, dropwise, 26.2 g. (0.2 mole) of N-ethyl-N-isopropylethanolamine. The mixture was heated under reflux for two hours and the benzene and excess thionyl chloride removed by dis-tillation, the last traces being removed *in vacuo*. The tillation, the last traces being removed in vacuo. residue was dissolved in a small amount of water, the solution filtered, the filtrate extracted once with ether and the ethereal extract discarded. The aqueous extract was basified with potassium carbonate, a large excess being added to saturate the solution. The mixture was extracted with ether, the ethereal extracts dried over anhydrous magnesium sulfate, the ether removed and the residue distilled *in vacuo* through a Vigreux column; yield, 20.6 g. (69%); b. p. 87-89° (72 mm.). The freshly distilled product very slowly precipitates long thin needles of the cyclic dimer. By the same general procedure all of the compounds reported in Table II were prepared.

N-[*β*-Isopropylmethylamino)-ethyl]-phenothiazine Hy-drochloride.—The general method for the preparation of N-(alkylaminoalkyl)-phenothiazines previously re-(isopropylmethylamino)-ethyl chloride and sodamide.¹⁶

All of the compounds reported in Table III were prepared by this general procedure. In several instances toluene was used in place of xylene as a solvent with corresponding longer reflux times (eight to twenty-four hours).

Summary

Nine new 2-disubstituted aminoalcohols 1. and fifteen new 2-disubstituted aminoalkyl chlorides have been prepared.

2. Sixteen new N-disubstituted aminoalkylphenothiazines have been prepared.

3. The results of preliminary pharmacological tests on these phenothiazine derivatives for antihistaminic activity is reported.

(16) Vaughn, Vogt and Nieuwland, THIS JOURNAL, 56, 2120 (1934).

KALAMAZOO, MICHIGAN **Received January 23, 1950**

[CONTRIBUTION FROM THE LILLY RESEARCH LABORATORIES]

The Synthesis of Some β -Aminoethyldiazines as Histamine Analogs

By REUBEN G. JONES, EDMUND C. KORNFELD AND KEITH C. MCLAUGHLIN

The histamine-like activities of a number of β -aminoethyl heterocyclic nitrogen compounds were reported¹ recently. Among this group were 2-*β*-aminoethylquinoxaline, 2-*β*-aminoethylpyrazine, $3-\beta$ -aminoethylpyridazine and the 2- and $4-\beta$ -aminoethylpyrimidines. These compounds, presented in Table I, were synthesized by the same general procedure, and it is the purpose of this paper to describe their preparation.

After considering a number of possible synthetic routes, a method similar to that used by (1) Lee and Jones, J. Pharmacol., 95, 71 (1949).

Walter, Hunt and Fosbinder for the preparation of 2- β -aminoethylpyridine² appeared to be the most promising. The method is outlined in the accompanying sequence of reactions.

$$\begin{array}{c} \text{RCH}_{3} + \text{CCI}_{3}\text{CHO} \xrightarrow{\text{Pyridine}} \\ \Delta \\ \text{RCH}_{2}\text{CHOHCCI}_{3} \xrightarrow{\text{NaOH}} \text{RCH} = \text{CHCO}_{2}\text{H} \xrightarrow{\text{(H)}} \\ \hline \text{Ni} \\ \hline \end{array}$$

(2) Walter, Hunt and Fosbinder, THIS JOURNAL, 63, 2771 (1941).