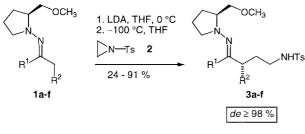
Asymmetric Synthesis of γ -Amino Ketones and Nitriles via β -Aminoethylation of SAMP-Hydrazones with Tosylaziridine

Dieter Enders,* Carsten F. Janeck, Jan Runsink

Institut für Organische Chemie, Rheinisch-Westfälische Technische Hochschule, Professor-Pirlet-Straße 1, 52074 Aachen, Germany Fax +49(241)8888-127; E-mail: enders@rwth-aachen.de


Received 2 February 2000

Abstract: The asymmetric synthesis of γ -amino nitriles **4a-c** and γ -amino ketones **5d-f** is described. Key step of the procedure is the diastereoselective β -aminoethylation of metalated SAMP-/RAMP-hydrazones **1a-f** with tosylaziridine **2**. Cleavage of the chiral auxiliary with MMPP leads to γ -amino nitriles **4a-c** in good yields and excellent enantiomeric excesses ($ee \ge 98\%$). Likewise γ -amino ketones **5d-f** ($ee \ge 98\%$) were obtained in good overall yields by cleavage of the hydrazones **3d-f** with aqueous copper(II) chloride solution.

Key words: asymmetric synthesis, hydrazones, ring opening, aziridines, aminoethylation

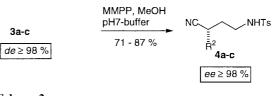
Ring opening reactions of aziridines have considerable value in organic synthesis.¹ Although examples of nucleophilic ring opening reactions of aziridines with organolithium reagents are well known, enolates of simple ketones have rarely been used.² The reaction of lithio azaenolates with aziridines has not been published so far.

We now wish to report an extension of our SAMP-/ RAMP-hydrazone methodology³ employing tosylaziridine 2⁴ as electrophile in the asymmetric β -aminoethylation of hydrazones **1a-f**. Representative carbonyl compounds were converted into aldehyde hydrazones **1ac** and ketone hydrazones **1d-f**. As shown in Scheme 1, lithio azaenolates of SAMP-/RAMP-hydrazones **1b-f** were employed in the ring opening reaction of tosylaziridine **2** to give the aminoethylated compounds **3b-f** in good yields (63 - 91%) and excellent diastereoselectivity ($de \ge$ 98%). Surprisingly the aldehyde hydrazone **3a** was obtained only in 24% yield with recovery of the starting material. In contrast, unsymmetrical as well as symmetrical ketones like dioxanone-SAMP hydrazone **1f**⁵ reacted smoothly (Scheme 1 and Table 1).

Scheme 1

Table 1Synthesis of β -aminoethylated hydrazones 3a-f

Product	R ⁱ	R ²	Yield	de^{a}	$[\alpha]_{\rm D}^{26}$
			(%)	(%)	$(c, \operatorname{CHCl}_3)^{\mathrm{b}}$
(<i>R</i> , <i>S</i>)- 3 a	Н	<i>i</i> -Pr	24	≥ 98	- 1.7 (1.00)
(<i>R</i> , <i>S</i>)- 3b	Н	Bn	63	≥98	- 39.5 (0.75)
(R,S)- 3c	Н	3,4-OCH ₂ O-Ph	88	≥98	- 42.9 (1.00)
$(S,R)-3c^{c}$	Н	3,4-OCH ₂ O-Ph	91	≥98	+ 44.0 (1.00)
(S,S)- 3d	Et	Me	79	≥98	+ 174.9 (2.27)
(<i>S</i> , <i>S</i>)- 3e	Ph	Me	88	≥ 98	+ 354.7 (1.00)
(<i>S</i> , <i>S</i>)- 3f			87 ^d	≥98	+ 98.6 (0.72)
		\mathbf{X}			


^a Determined by ¹H NMR and ¹³C NMR spectroscopy. ^b All optical rotations were measured in Uvasol grade CHCl₃ at temperatures $T = 26^{\circ}C \pm 1^{\circ}C$. ^c RAMP was used as chiral auxiliary. ^d The aza-enolate of **1f** was prepared by addition of 1 equiv *t*-BuLi at -78 °C.

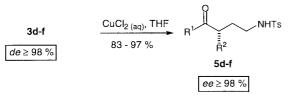
The aminoethylated aldehyde hydrazones **3a-c** were subsequently treated with magnesium monoperoxyphthalate (MMPP)⁶ to give γ -amino nitriles **4a-c** in good yields (71 - 87%) and excellent enantiomeric excesses (*ee* \geq 98%) (Scheme 2 and Table 2).

Table 2 Synthesis of γ -amino nitriles **4a-c** by cleavage of the hydra-zones **3a-c** with MMPP

Product	R ²	Yield (%)	ee (%) ^ů	$\left[\alpha\right]_{\rm D}^{26}$ $(c, \rm CHCl_3)^{\rm b}$
(R)-4a	<i>i-</i> Pr	87	≥ 98	+31.7(1.23)
(R)-4b	Bn	84	≥ 98	+16.0(1.12)
(<i>R</i>)-4c	3,4-OCH ₂ O-Ph	71	≥ 98	+ 34.5 (1.08)
(<i>S</i>)-4c	3,4-OCH ₂ O-Ph	83	≥ 98	- 38.5 (1.32)

^a Based on the *de*-value of the corresponding MTPA-amide (HPLC, Chiralpak AD ($4.6 \times 250 \text{ mm}$)). ^b All optical rotations were measured in Uvasol grade CHCl₃ at temperatures T = 26° C ± 1°C.

Scheme 2


Synlett 2000, No. 5, 641–643 $\,$ ISSN 0936-5214 $\,$ © Thieme Stuttgart \cdot New York

Cleavage of the chiral auxiliary of ketone hydrazones **1df** with a 1 M aqueous solution of copper(II) chloride⁷ afforded γ -amino ketones **5d-f** in excellent yields (83 -97%) and enantiomeric excesses ($ee \ge 98\%$) (Scheme 3 and Table 3).

Table 3 Synthesis of γ -amino ketones **5d-f** by cleavage of the hydrazones**3d-f** with aqueous copper(II) chloride solution

Product	R^1	R ²	Yield (%)	ee (%) ^a	$\left[\alpha\right]_{\rm D}^{26}$ $(c, \rm CHCl_3)^{\rm b}$
(S)-5d (S)-5e (S)-5f	Et Ph	Me Me	97 83 80	≥ 98 ≥ 98 ≥ 98	- 9.1 (1.05) - 6.0 (1.00) + 4.4 (1.00)

^a Based on the *de*-value of the corresponding MTPA-amide (HPLC, Chiralpak AD (4.6×250 mm)). ^b All optical rotations were measured in Uvasol grade CHCl₃ at temperatures T = 26° C ± 1°C.

Scheme 3

The relative configuration of the new stereogenic centre of the aminoethylated hydrazones **3** was confirmed by NOE experiments on (S,S)-**3f** (Figure 1).

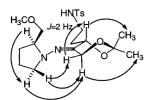


Figure 1 NOE connectivity for 3f

Assuming uniform reaction pathways, the absolute configuration of hydrazones **3a-e** were assigned by analogy with **3f**. The results as indicated in Table 1 are in accordance with the proposed general mechanism for the α alkylation of SAMP-/RAMP-hydrazones.^{3a} The enantiomeric excesses of γ -amino nitriles **4a-c** and γ -amino ketones **5d-f** were determined by HPLC of the corresponding MTPA-amides.

In conclusion, we have developed an efficient method for the enantioselective β -aminoethylation of SAMP-/ RAMP-hydrazones using tosylaziridine as electrophile. Cleavage of the chiral auxiliary affords either γ -amino nitriles or γ -amino ketones in good overall yields and excellent enantiomeric excesses.

General procedure for the aminoethylation of SAMP-/ RAMP-hydrazones **1a-e**:

The hydrazones **1a-e** were slowly added to a solution of 1.05 equiv of LDA in THF (5 mL/mmol) at 0 °C and stirred for 4 h. The resulting yellow solutions were cooled to -100 °C and a solution of 1 equiv tosylaziridine 2 in the minimum amount of THF was added dropwise with a syringe pump over 30 min. The temperature was kept at -100 °C for 2 h and the reaction mixtures allowed to reach room temperature overnight. The reactions were quenched by the addition of a saturated aqueous NH₄Cl solution (10 mL). The aqueous phases were extracted with CH_2Cl_2 (3×25 mL). The combined organic phases were washed with H₂O (20 mL) and brine (20 mL) and dried over $MgSO_4$. After removal of the solvent, the residues were purified by flash chromatography (SiO₂; ether/pentane 1:1 containing 2% NEt₃) to afford the aminoethylated products 3a-e.

General procedure for the cleavage of SAMP-/RAMPaldehyde hydrazones **3a-c** with magnesium monoperoxyphthalate:

Magnesium monoperoxyphthalate (2 equiv) was dissolved in MeOH (20 mL/mmol) and pH 7-buffer solution (10 mL/mmol). The resulting suspension was cooled to 0 °C and treated with hydrazones **3a-c** dissolved in MeOH (2 mL/mmol). The reaction mixtures were allowed to warm to room temperature, stirred for 4 h and finally H₂O (50 mL) was added. The aqueous phases were extracted with ether (3×50 mL). The combined organic phases were washed with H₂O (20 mL), brine (2×50 mL) and dried over MgSO₄. After removal of the solvent, the residues were purified by flash chromatography (SiO₂; ether/pentane 1:2) to afford γ -amino nitriles **4a-c**.

General procedure for the cleavage of SAMP-/RAMP-ketone hydrazones **3d-f** with 1 M aqueous solution of copper (II) chloride:

To an ice cooled solution of the hydrazones **3d-f** in THF (10 mL/mmol) was slowly added a 1 M aqueous solution of copper(II) chloride (1.2 equiv) and the resulting mixtures were stirred for 12 h. Then NH₃ aq (10 mL) was added and the reaction mixtures extracted with ether (3×25 mL). The combined organic phases were washed with brine (2×25 mL) and dried over MgSO₄. After removal of the solvent, the residues were purified by flash chromatography (SiO₂; ether/pentane 1:2) to afford γ -amino ketones **5d-f.**^{8,9}

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 380) and the Fonds der Chemischen Industrie. We thank Degussa-Hüls AG, BASF AG, the former Hoechst AG and Bayer AG for the donation of chemicals.

References and Notes

- (1) a) Atkinson, R. S. *Tetrahedron* 1999, 55, 1519. b) Stamm, H. *J. Prakt. Chem.* 1999, 345, 319. c) Pearson, W. H.; Lian, B. W.; Bergmeier, S. C. In *Comprehensive Heterocyclic Chemistry*, Vol. 1 A, Padwa, A., Ed.; Pergamon: Oxford 1996, p 1. d) Tanner, D. *Angew. Chem., Int. Ed. Engl.* 1994, 33, 599.
- (2) a) Stamm, H.; Weiß, R. Synthesis 1986, 392. b) Stamm, H.; Weiß, R. Synthesis 1986, 395. c) Jones, D. S.; Srinivasan, A.; Kasina, S.; Fritzberg, A. R.; Wilkening, D. W. J. Org. Chem. 1989, 54, 1940. d) Bergmeier, S. C.; Lee, W. K.; Rapoport, H. J. Org. Chem. 1993, 58, 5019. e) Lygo, B. Synlett 1993, 764.
- (3) a) Enders, D. In Asymmetric Synthesis, Vol. 3; Morrison, J. D., Ed.; Academic: New York, 1984, p 275. b) Enders, D.; Klatt, M. In Encyclopedia of Reagents for Organic Synthesis, Vol. 1, Paquette, L. A., Ed.; Wiley: Chichester, 1995, p 178.
- (4) The use of differently activated aziridines proved to be unsuccessful so far (see citation 2e)
- (5) Enders, D.; Bockstiegel, B.; Gatzweiler, W.; Jegelka, U.; Dücker, B.; Wortmann, L. *Chimica Oggi* **1997**, *15*, 20.
- (6) Enders, D.; Plant, A. Synlett 1994, 1054.
- (7) Enders, D.; Hundertmark, T.; Lazny, R. Synth. Commun. 1999, 29, 27.
- (8) Selected analytical and spectroscopic data of compounds 3, 4 and 5:

1305, 1289, 1247, 1197, 1185, 1160, 1119, 1095, 1040, 971, 934, 865, 815, 757, 708, 666, 551 cm⁻¹; Anal. calcd. for $C_{24}H_{31}N_3O_5S$: C 60.87, H 6.60, N 8.87; found: C 60.64, H 6.55, N 9.02.

643

- (*R*)-4c: $[\alpha]_{D}^{26} = +34.5$ (c = 1.08, CHCl₃); ¹H NMR (300 MHz, $CDCl_3$): $\delta = 2.04$ (m, 2 H, CH_2CH_2N), 2.44 (s, 3 H, CH_3), 3.04 (m, 2 H, CH₂N), 3.87 (t, 1 H, J = 7.4 Hz, CHCN), 4.95 (t, 1 H, *J* = 6.3 Hz, N*H*), 5.97 (s, 2 H, OC*H*₂O), 6.70 - 6.77 (m, 3 H, ArH), 7.32 (d, 2 H, J = 8.0 Hz, H₃CCCH), 7.73 (d, 2 H, J = 8.0 Hz, SO₂CCH); ¹³C NMR (75 MHz, CDCl₃): δ = 21.52, 33.82, 35.71, 40.26, 101.47, 107.67, 108.70, 120.41, 120.90, 127.14, 128.32, 129.93, 136.38, 143.88, 147.65, 148.34; MS (CI, isobutane) m/z 359 (M++1), 358, 75; IR (CDCl₃): 3280, 3022, 2925, 2895, 2242, 1598, 1505, 1490, 1446, 1368, 1329, 1306, 1291, 1276, 1250, 1186, 1160, 1094, 1040, 932, 858, 814, 757, 707, 667, 552 cm⁻¹; Anal. calcd. for: C₁₈H₁₈N₂O₄S: C 60.32, H 5.06, N 7.82; found: C 60.32, H 5.41, N 7.91. (S)-**5e**: $[\alpha]_{D}^{26} = -6.0$ (c = 1.00, CHCl₃); ¹H NMR (300 MHz, $CDCl_3$): $\delta = 1.12$ (d, 3 H, J = 6.9 Hz, $CHCH_3$), 1.59 (m, 1 H, HCHCH₂NH), 2.03 (m, 1 H, HCHCH₂NH), 2.36 (s, 3 H, CCH₃), 2.97 (m, 2 H, CH₂NH), 3.59 (m, 1H, CHCH₃), 5.35 (t, $1 \text{ H}, J = 6.2 \text{ Hz}, \text{NH}, 7.22 \text{ (d}, 2 \text{ H}, J = 8.0 \text{ Hz}, \text{CHCCH}_3), 7.42$ (m, 3 H, Ph), 7.53 (m, 2 H, Ph), 7.71 (d, 2 H, J = 8.3 Hz, CHCSO₂); ¹³C NMR (75 MHz, CDCl₃): $\delta = 17.59, 21.43,$ 32.39, 37.70, 41.04, 126.81, 128.18, 128.46, 129.47, 132.89, 135.76, 136.49, 143.09, 203.44; MS (CI, isobutane) m/z 332 (M++1), 176, 161, 135, 71; IR (CDCl₃): 3280, 3063, 2972, 2933, 2875, 1680, 1597, 1495, 1448, 1427, 1379, 1327, 1306, 1291, 1235, 1202, 1184, 1160, 1094, 1002, 975, 816, 796, 707, 686, 664, 574, 552 cm⁻¹; Anal. calcd. for: C₁₈H₂₁NO₃S: C 65.23; H 6.39, N 4.23; found: C 64.92, H 6.66, N 4.44.
- (9) All compounds showed suitable spectroscopic data (IR, MS, NMR) and correct elemental analyses.

Article Identifier:

1437-2096,E;2000,0,05,0641,0643,ftx,en;G02700ST.pdf