The Hive > Novel Discourse

New method for P2P

<< < (2/8) > >>

Rhodium:
This synthesis might aid the people trying to do the condensation step: http://www3.springer-ny.com/chedr/sample/13smi897.htm

twodogs:
With all due respect Rhodium, the reference that you have given would not help any one with the condensation that I have mentioned. ie between benzaldehyde and butanone (methyl ethyl ketone).
Your reference concerns the condensation of aromatic aldehydes and acetone under basic conditions,
The literature on aldol condensations involving these reactants established the following:
C6H5CHO + CH3COCH3 + NaOH         ------> C6H5CH=CHCOCH3 and
C6H5CHO + CH3CH2COCH3 + NaOH -----> C6H5CH=CHCOCH2CH3 but
C6H5CHO + CH3CH2COCH3 + HCl     -----> C6H5CH=C(COCH3)CH3.
The condensation to get methyl phenyl butenone  needs to be done under acidic conditions. There is a French reference somewhere that states that the condensation can be done by reluxing equal volume amounts of benzaldehyde and butanone with hydrochloric acid and there are also references using  H2SO4. I have tried both of these and did not get the result that I did using dry HCl gas.

Rhodium:
Okay, I'll shut up when it comes to aldol chemistry again. That's not my field.

lugh:
Interesting. What is the reference for the first condensation reaction?
--- End quote ---


The references from the article on the first condensation from Organic Reactions 16 (entirely on aldol condensations) are from Rec Trav Chem 84 17 & 979 (1968)

Rhodium:
Benzaldehyde + methyl ethyl ketone -> 2-acetyl-propenylbenzene

Acid Catalyzed (HCl or H2SO4):

C.R.Hebd.Seances Acad.Sci. 226, 1095 (1948)
C.R.Hebd.Seances Acad.Sci. 226; 1948; 500.
Indian J.Chem.Sect.B 40(8), 667-673 (2001)
Bull.Chem.Soc.Jpn.; 69; 9; 1996; 2633-2638.
Bull.Soc.Chim.Fr.; 47; 1930; 195,199,200;
Bull.Soc.Chim.Fr.; 1970; 1497-1502.
Bull.Acad.Sci.USSR Div.Chem.Sci.(Engl.Transl.); EN; 5; 1966; 867-871;
Izv.Akad.Nauk SSSR Ser.Khim.; RU; 5; 1966; 909-914.
Pol.J.Chem.; EN; 52; 1978; 2233-2241.
Pol.J.Chem.; EN; 53; 1979; 849-853.
Gazz.Chim.Ital.; 67; 1937; 440, 442.
Gazz.Chim.Ital.; 63; 1933; 199, 202.
Ann.Sci.Univ.Jassy,Sect.1; 16; 1931; 536,540,542.
Arch.Pharm.(Weinheim Ger.); GE; 309; 1976; 969-978.
J.Pharm.Sci.; 64; 1975; 241-248.
Can.J.Chem.; 49; 1971; 105-117.
Chem.Ber.; 35; 1902; 970.
Ann.Chim.(Paris); 4; 1949; 242;
J. Amer. Chem. Soc. 65, 1824 (1943) (https://www.thevespiary.org/rhodium/Rhodium/pdf/phcho-mek-aldol.pdf)
Tetrahedron: Asymmetry 6(9), 2143-2144 (1995) "Enones were prepared from the reaction of the corresponding aryl aldehyde with 2-butanone in 1M H2SO4 of acetic acid solution."

Ruthenium(III)Chloride (90% yield):

Tetrahedron 54(32), 9475-9480 (1998)
DOI:10.1016/S0040-4020(98)00575-4



Phenylacetone by Bayer-Villiger Oxidation of 2-acetyl-1-phenylprop-1-ene
Boeeseken & Jacobs
Recl. Trav. Chim. Pays-Bas 55, 786 (1936)

Peracetic acid treatment of 2-acetyl-propenylbenzene (3-methyl-4-phenyl-but-3-en-2-one) below 30°C resulted in the formation of phenylacetone enol acetate (2-acetoxy-1-phenylprop-1-ene), mp 131°C and bp 103°C/3mmHg. Heating the crude reaction mixture with aqueous HCl at 80°C gave phenylacetone.

Navigation

[0] Message Index

[#] Next page

[*] Previous page

Go to full version